| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 2 |  | 0zd |  |-  ( T. -> 0 e. ZZ ) | 
						
							| 3 |  | oveq2 |  |-  ( k = n -> ( -u 1 ^ k ) = ( -u 1 ^ n ) ) | 
						
							| 4 |  | oveq2 |  |-  ( k = n -> ( 2 x. k ) = ( 2 x. n ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( k = n -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. n ) + 1 ) ) | 
						
							| 6 | 3 5 | oveq12d |  |-  ( k = n -> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 7 |  | eqid |  |-  ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) = ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 8 |  | ovex |  |-  ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. _V | 
						
							| 9 | 6 7 8 | fvmpt |  |-  ( n e. NN0 -> ( ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ` n ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( T. /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ` n ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 11 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 12 |  | reexpcl |  |-  ( ( -u 1 e. RR /\ n e. NN0 ) -> ( -u 1 ^ n ) e. RR ) | 
						
							| 13 | 11 12 | mpan |  |-  ( n e. NN0 -> ( -u 1 ^ n ) e. RR ) | 
						
							| 14 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 15 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 16 | 14 15 | mpan |  |-  ( n e. NN0 -> ( 2 x. n ) e. NN0 ) | 
						
							| 17 |  | nn0p1nn |  |-  ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 18 | 16 17 | syl |  |-  ( n e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 19 | 13 18 | nndivred |  |-  ( n e. NN0 -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 20 | 19 | recnd |  |-  ( n e. NN0 -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. CC ) | 
						
							| 21 | 20 | adantl |  |-  ( ( T. /\ n e. NN0 ) -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. CC ) | 
						
							| 22 | 7 | leibpi |  |-  seq 0 ( + , ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ) ~~> ( _pi / 4 ) | 
						
							| 23 | 22 | a1i |  |-  ( T. -> seq 0 ( + , ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ) ~~> ( _pi / 4 ) ) | 
						
							| 24 | 1 2 10 21 23 | isumclim |  |-  ( T. -> sum_ n e. NN0 ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) = ( _pi / 4 ) ) | 
						
							| 25 | 24 | mptru |  |-  sum_ n e. NN0 ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) = ( _pi / 4 ) |