| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leibpi.1 |  |-  F = ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 2 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 3 |  | 0zd |  |-  ( T. -> 0 e. ZZ ) | 
						
							| 4 |  | eqidd |  |-  ( ( T. /\ j e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 5 |  | 0cnd |  |-  ( ( k e. NN0 /\ ( k = 0 \/ 2 || k ) ) -> 0 e. CC ) | 
						
							| 6 |  | ioran |  |-  ( -. ( k = 0 \/ 2 || k ) <-> ( -. k = 0 /\ -. 2 || k ) ) | 
						
							| 7 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 8 |  | leibpilem1 |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( k e. NN /\ ( ( k - 1 ) / 2 ) e. NN0 ) ) | 
						
							| 9 | 8 | simprd |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( k - 1 ) / 2 ) e. NN0 ) | 
						
							| 10 |  | reexpcl |  |-  ( ( -u 1 e. RR /\ ( ( k - 1 ) / 2 ) e. NN0 ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. RR ) | 
						
							| 11 | 7 9 10 | sylancr |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. RR ) | 
						
							| 12 | 8 | simpld |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> k e. NN ) | 
						
							| 13 | 11 12 | nndivred |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. CC ) | 
						
							| 15 | 6 14 | sylan2b |  |-  ( ( k e. NN0 /\ -. ( k = 0 \/ 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. CC ) | 
						
							| 16 | 5 15 | ifclda |  |-  ( k e. NN0 -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) e. CC ) | 
						
							| 17 | 16 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) e. CC ) | 
						
							| 18 | 17 | fmpttd |  |-  ( T. -> ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) : NN0 --> CC ) | 
						
							| 19 | 18 | ffvelcdmda |  |-  ( ( T. /\ j e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) e. CC ) | 
						
							| 20 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 21 | 20 | a1i |  |-  ( T. -> 2 e. NN0 ) | 
						
							| 22 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 23 | 21 22 | sylan |  |-  ( ( T. /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 24 |  | nn0p1nn |  |-  ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( T. /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 26 | 25 | nnrecred |  |-  ( ( T. /\ n e. NN0 ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 27 | 26 | fmpttd |  |-  ( T. -> ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) : NN0 --> RR ) | 
						
							| 28 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) | 
						
							| 29 | 21 28 | sylan |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) | 
						
							| 30 | 29 | nn0red |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 x. k ) e. RR ) | 
						
							| 31 |  | peano2nn0 |  |-  ( k e. NN0 -> ( k + 1 ) e. NN0 ) | 
						
							| 32 | 31 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> ( k + 1 ) e. NN0 ) | 
						
							| 33 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ ( k + 1 ) e. NN0 ) -> ( 2 x. ( k + 1 ) ) e. NN0 ) | 
						
							| 34 | 20 32 33 | sylancr |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 x. ( k + 1 ) ) e. NN0 ) | 
						
							| 35 | 34 | nn0red |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 x. ( k + 1 ) ) e. RR ) | 
						
							| 36 |  | 1red |  |-  ( ( T. /\ k e. NN0 ) -> 1 e. RR ) | 
						
							| 37 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 38 | 37 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> k e. RR ) | 
						
							| 39 | 38 | lep1d |  |-  ( ( T. /\ k e. NN0 ) -> k <_ ( k + 1 ) ) | 
						
							| 40 |  | peano2re |  |-  ( k e. RR -> ( k + 1 ) e. RR ) | 
						
							| 41 | 38 40 | syl |  |-  ( ( T. /\ k e. NN0 ) -> ( k + 1 ) e. RR ) | 
						
							| 42 |  | 2re |  |-  2 e. RR | 
						
							| 43 | 42 | a1i |  |-  ( ( T. /\ k e. NN0 ) -> 2 e. RR ) | 
						
							| 44 |  | 2pos |  |-  0 < 2 | 
						
							| 45 | 44 | a1i |  |-  ( ( T. /\ k e. NN0 ) -> 0 < 2 ) | 
						
							| 46 |  | lemul2 |  |-  ( ( k e. RR /\ ( k + 1 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( k <_ ( k + 1 ) <-> ( 2 x. k ) <_ ( 2 x. ( k + 1 ) ) ) ) | 
						
							| 47 | 38 41 43 45 46 | syl112anc |  |-  ( ( T. /\ k e. NN0 ) -> ( k <_ ( k + 1 ) <-> ( 2 x. k ) <_ ( 2 x. ( k + 1 ) ) ) ) | 
						
							| 48 | 39 47 | mpbid |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 x. k ) <_ ( 2 x. ( k + 1 ) ) ) | 
						
							| 49 | 30 35 36 48 | leadd1dd |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) <_ ( ( 2 x. ( k + 1 ) ) + 1 ) ) | 
						
							| 50 |  | nn0p1nn |  |-  ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) | 
						
							| 51 | 29 50 | syl |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. NN ) | 
						
							| 52 | 51 | nnred |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. RR ) | 
						
							| 53 | 51 | nngt0d |  |-  ( ( T. /\ k e. NN0 ) -> 0 < ( ( 2 x. k ) + 1 ) ) | 
						
							| 54 |  | nn0p1nn |  |-  ( ( 2 x. ( k + 1 ) ) e. NN0 -> ( ( 2 x. ( k + 1 ) ) + 1 ) e. NN ) | 
						
							| 55 | 34 54 | syl |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 2 x. ( k + 1 ) ) + 1 ) e. NN ) | 
						
							| 56 | 55 | nnred |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 2 x. ( k + 1 ) ) + 1 ) e. RR ) | 
						
							| 57 | 55 | nngt0d |  |-  ( ( T. /\ k e. NN0 ) -> 0 < ( ( 2 x. ( k + 1 ) ) + 1 ) ) | 
						
							| 58 |  | lerec |  |-  ( ( ( ( ( 2 x. k ) + 1 ) e. RR /\ 0 < ( ( 2 x. k ) + 1 ) ) /\ ( ( ( 2 x. ( k + 1 ) ) + 1 ) e. RR /\ 0 < ( ( 2 x. ( k + 1 ) ) + 1 ) ) ) -> ( ( ( 2 x. k ) + 1 ) <_ ( ( 2 x. ( k + 1 ) ) + 1 ) <-> ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 59 | 52 53 56 57 58 | syl22anc |  |-  ( ( T. /\ k e. NN0 ) -> ( ( ( 2 x. k ) + 1 ) <_ ( ( 2 x. ( k + 1 ) ) + 1 ) <-> ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 60 | 49 59 | mpbid |  |-  ( ( T. /\ k e. NN0 ) -> ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 61 |  | oveq2 |  |-  ( n = ( k + 1 ) -> ( 2 x. n ) = ( 2 x. ( k + 1 ) ) ) | 
						
							| 62 | 61 | oveq1d |  |-  ( n = ( k + 1 ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. ( k + 1 ) ) + 1 ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( n = ( k + 1 ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) = ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) ) | 
						
							| 64 |  | eqid |  |-  ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 65 |  | ovex |  |-  ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) e. _V | 
						
							| 66 | 63 64 65 | fvmpt |  |-  ( ( k + 1 ) e. NN0 -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` ( k + 1 ) ) = ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) ) | 
						
							| 67 | 32 66 | syl |  |-  ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` ( k + 1 ) ) = ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) ) | 
						
							| 68 |  | oveq2 |  |-  ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( n = k -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( n = k -> ( 1 / ( ( 2 x. n ) + 1 ) ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 71 |  | ovex |  |-  ( 1 / ( ( 2 x. k ) + 1 ) ) e. _V | 
						
							| 72 | 70 64 71 | fvmpt |  |-  ( k e. NN0 -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 73 | 72 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 74 | 60 67 73 | 3brtr4d |  |-  ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` ( k + 1 ) ) <_ ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) ) | 
						
							| 75 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 76 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 77 |  | ax-1cn |  |-  1 e. CC | 
						
							| 78 |  | divcnv |  |-  ( 1 e. CC -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) | 
						
							| 79 | 77 78 | mp1i |  |-  ( T. -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) | 
						
							| 80 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 81 | 80 | mptex |  |-  ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V | 
						
							| 82 | 81 | a1i |  |-  ( T. -> ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V ) | 
						
							| 83 |  | oveq2 |  |-  ( n = k -> ( 1 / n ) = ( 1 / k ) ) | 
						
							| 84 |  | eqid |  |-  ( n e. NN |-> ( 1 / n ) ) = ( n e. NN |-> ( 1 / n ) ) | 
						
							| 85 |  | ovex |  |-  ( 1 / k ) e. _V | 
						
							| 86 | 83 84 85 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) | 
						
							| 87 | 86 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) | 
						
							| 88 |  | nnrecre |  |-  ( k e. NN -> ( 1 / k ) e. RR ) | 
						
							| 89 | 88 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR ) | 
						
							| 90 | 87 89 | eqeltrd |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) e. RR ) | 
						
							| 91 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 92 | 91 | adantl |  |-  ( ( T. /\ k e. NN ) -> k e. NN0 ) | 
						
							| 93 | 92 72 | syl |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 94 | 91 51 | sylan2 |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. NN ) | 
						
							| 95 | 94 | nnrecred |  |-  ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR ) | 
						
							| 96 | 93 95 | eqeltrd |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) e. RR ) | 
						
							| 97 |  | nnre |  |-  ( k e. NN -> k e. RR ) | 
						
							| 98 | 97 | adantl |  |-  ( ( T. /\ k e. NN ) -> k e. RR ) | 
						
							| 99 | 20 92 28 | sylancr |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. k ) e. NN0 ) | 
						
							| 100 | 99 | nn0red |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. k ) e. RR ) | 
						
							| 101 |  | peano2re |  |-  ( ( 2 x. k ) e. RR -> ( ( 2 x. k ) + 1 ) e. RR ) | 
						
							| 102 | 100 101 | syl |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR ) | 
						
							| 103 |  | nn0addge1 |  |-  ( ( k e. RR /\ k e. NN0 ) -> k <_ ( k + k ) ) | 
						
							| 104 | 98 92 103 | syl2anc |  |-  ( ( T. /\ k e. NN ) -> k <_ ( k + k ) ) | 
						
							| 105 | 98 | recnd |  |-  ( ( T. /\ k e. NN ) -> k e. CC ) | 
						
							| 106 | 105 | 2timesd |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. k ) = ( k + k ) ) | 
						
							| 107 | 104 106 | breqtrrd |  |-  ( ( T. /\ k e. NN ) -> k <_ ( 2 x. k ) ) | 
						
							| 108 | 100 | lep1d |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. k ) <_ ( ( 2 x. k ) + 1 ) ) | 
						
							| 109 | 98 100 102 107 108 | letrd |  |-  ( ( T. /\ k e. NN ) -> k <_ ( ( 2 x. k ) + 1 ) ) | 
						
							| 110 |  | nngt0 |  |-  ( k e. NN -> 0 < k ) | 
						
							| 111 | 110 | adantl |  |-  ( ( T. /\ k e. NN ) -> 0 < k ) | 
						
							| 112 | 94 | nnred |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR ) | 
						
							| 113 | 94 | nngt0d |  |-  ( ( T. /\ k e. NN ) -> 0 < ( ( 2 x. k ) + 1 ) ) | 
						
							| 114 |  | lerec |  |-  ( ( ( k e. RR /\ 0 < k ) /\ ( ( ( 2 x. k ) + 1 ) e. RR /\ 0 < ( ( 2 x. k ) + 1 ) ) ) -> ( k <_ ( ( 2 x. k ) + 1 ) <-> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) ) | 
						
							| 115 | 98 111 112 113 114 | syl22anc |  |-  ( ( T. /\ k e. NN ) -> ( k <_ ( ( 2 x. k ) + 1 ) <-> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) ) | 
						
							| 116 | 109 115 | mpbid |  |-  ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) | 
						
							| 117 | 116 93 87 | 3brtr4d |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) <_ ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) | 
						
							| 118 | 94 | nnrpd |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR+ ) | 
						
							| 119 | 118 | rpreccld |  |-  ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR+ ) | 
						
							| 120 | 119 | rpge0d |  |-  ( ( T. /\ k e. NN ) -> 0 <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 121 | 120 93 | breqtrrd |  |-  ( ( T. /\ k e. NN ) -> 0 <_ ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) ) | 
						
							| 122 | 75 76 79 82 90 96 117 121 | climsqz2 |  |-  ( T. -> ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ~~> 0 ) | 
						
							| 123 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 124 | 123 | a1i |  |-  ( T. -> -u 1 e. CC ) | 
						
							| 125 |  | expcl |  |-  ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) | 
						
							| 126 | 124 125 | sylan |  |-  ( ( T. /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) | 
						
							| 127 | 51 | nncnd |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. CC ) | 
						
							| 128 | 51 | nnne0d |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) =/= 0 ) | 
						
							| 129 | 126 127 128 | divrecd |  |-  ( ( T. /\ k e. NN0 ) -> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ k ) x. ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 130 |  | oveq2 |  |-  ( n = k -> ( -u 1 ^ n ) = ( -u 1 ^ k ) ) | 
						
							| 131 | 130 69 | oveq12d |  |-  ( n = k -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) = ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 132 |  | eqid |  |-  ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 133 |  | ovex |  |-  ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) e. _V | 
						
							| 134 | 131 132 133 | fvmpt |  |-  ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 135 | 134 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 136 | 73 | oveq2d |  |-  ( ( T. /\ k e. NN0 ) -> ( ( -u 1 ^ k ) x. ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) ) = ( ( -u 1 ^ k ) x. ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 137 | 129 135 136 | 3eqtr4d |  |-  ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( ( -u 1 ^ k ) x. ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) ) ) | 
						
							| 138 | 2 3 27 74 122 137 | iseralt |  |-  ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) e. dom ~~> ) | 
						
							| 139 |  | climdm |  |-  ( seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) e. dom ~~> <-> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 140 | 138 139 | sylib |  |-  ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 141 |  | eqid |  |-  ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) = ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) | 
						
							| 142 |  | fvex |  |-  ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) e. _V | 
						
							| 143 | 132 141 142 | leibpilem2 |  |-  ( seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) <-> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 144 | 140 143 | sylib |  |-  ( T. -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 145 |  | seqex |  |-  seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) e. _V | 
						
							| 146 | 145 142 | breldm |  |-  ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) e. dom ~~> ) | 
						
							| 147 | 144 146 | syl |  |-  ( T. -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) e. dom ~~> ) | 
						
							| 148 | 2 3 4 19 147 | isumclim2 |  |-  ( T. -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 149 |  | eqid |  |-  ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) = ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) | 
						
							| 150 | 18 147 149 | abelth2 |  |-  ( T. -> ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) | 
						
							| 151 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 152 | 151 | adantl |  |-  ( ( T. /\ n e. NN ) -> n e. RR+ ) | 
						
							| 153 | 152 | rpreccld |  |-  ( ( T. /\ n e. NN ) -> ( 1 / n ) e. RR+ ) | 
						
							| 154 | 153 | rpred |  |-  ( ( T. /\ n e. NN ) -> ( 1 / n ) e. RR ) | 
						
							| 155 | 153 | rpge0d |  |-  ( ( T. /\ n e. NN ) -> 0 <_ ( 1 / n ) ) | 
						
							| 156 |  | nnge1 |  |-  ( n e. NN -> 1 <_ n ) | 
						
							| 157 | 156 | adantl |  |-  ( ( T. /\ n e. NN ) -> 1 <_ n ) | 
						
							| 158 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 159 | 158 | adantl |  |-  ( ( T. /\ n e. NN ) -> n e. RR ) | 
						
							| 160 | 159 | recnd |  |-  ( ( T. /\ n e. NN ) -> n e. CC ) | 
						
							| 161 | 160 | mulridd |  |-  ( ( T. /\ n e. NN ) -> ( n x. 1 ) = n ) | 
						
							| 162 | 157 161 | breqtrrd |  |-  ( ( T. /\ n e. NN ) -> 1 <_ ( n x. 1 ) ) | 
						
							| 163 |  | 1red |  |-  ( ( T. /\ n e. NN ) -> 1 e. RR ) | 
						
							| 164 |  | nngt0 |  |-  ( n e. NN -> 0 < n ) | 
						
							| 165 | 164 | adantl |  |-  ( ( T. /\ n e. NN ) -> 0 < n ) | 
						
							| 166 |  | ledivmul |  |-  ( ( 1 e. RR /\ 1 e. RR /\ ( n e. RR /\ 0 < n ) ) -> ( ( 1 / n ) <_ 1 <-> 1 <_ ( n x. 1 ) ) ) | 
						
							| 167 | 163 163 159 165 166 | syl112anc |  |-  ( ( T. /\ n e. NN ) -> ( ( 1 / n ) <_ 1 <-> 1 <_ ( n x. 1 ) ) ) | 
						
							| 168 | 162 167 | mpbird |  |-  ( ( T. /\ n e. NN ) -> ( 1 / n ) <_ 1 ) | 
						
							| 169 |  | elicc01 |  |-  ( ( 1 / n ) e. ( 0 [,] 1 ) <-> ( ( 1 / n ) e. RR /\ 0 <_ ( 1 / n ) /\ ( 1 / n ) <_ 1 ) ) | 
						
							| 170 | 154 155 168 169 | syl3anbrc |  |-  ( ( T. /\ n e. NN ) -> ( 1 / n ) e. ( 0 [,] 1 ) ) | 
						
							| 171 |  | iirev |  |-  ( ( 1 / n ) e. ( 0 [,] 1 ) -> ( 1 - ( 1 / n ) ) e. ( 0 [,] 1 ) ) | 
						
							| 172 | 170 171 | syl |  |-  ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) e. ( 0 [,] 1 ) ) | 
						
							| 173 | 172 | fmpttd |  |-  ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) : NN --> ( 0 [,] 1 ) ) | 
						
							| 174 |  | 1cnd |  |-  ( T. -> 1 e. CC ) | 
						
							| 175 |  | nnex |  |-  NN e. _V | 
						
							| 176 | 175 | mptex |  |-  ( n e. NN |-> ( 1 - ( 1 / n ) ) ) e. _V | 
						
							| 177 | 176 | a1i |  |-  ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) e. _V ) | 
						
							| 178 | 90 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) e. CC ) | 
						
							| 179 | 83 | oveq2d |  |-  ( n = k -> ( 1 - ( 1 / n ) ) = ( 1 - ( 1 / k ) ) ) | 
						
							| 180 |  | eqid |  |-  ( n e. NN |-> ( 1 - ( 1 / n ) ) ) = ( n e. NN |-> ( 1 - ( 1 / n ) ) ) | 
						
							| 181 |  | ovex |  |-  ( 1 - ( 1 / k ) ) e. _V | 
						
							| 182 | 179 180 181 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ` k ) = ( 1 - ( 1 / k ) ) ) | 
						
							| 183 | 86 | oveq2d |  |-  ( k e. NN -> ( 1 - ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) = ( 1 - ( 1 / k ) ) ) | 
						
							| 184 | 182 183 | eqtr4d |  |-  ( k e. NN -> ( ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ` k ) = ( 1 - ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) ) | 
						
							| 185 | 184 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ` k ) = ( 1 - ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) ) | 
						
							| 186 | 75 76 79 174 177 178 185 | climsubc2 |  |-  ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ~~> ( 1 - 0 ) ) | 
						
							| 187 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 188 | 186 187 | breqtrdi |  |-  ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ~~> 1 ) | 
						
							| 189 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 190 | 189 | a1i |  |-  ( T. -> 1 e. ( 0 [,] 1 ) ) | 
						
							| 191 | 75 76 150 173 188 190 | climcncf |  |-  ( T. -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) ~~> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) ` 1 ) ) | 
						
							| 192 |  | eqidd |  |-  ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) = ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) | 
						
							| 193 |  | eqidd |  |-  ( T. -> ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) = ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) ) | 
						
							| 194 |  | oveq1 |  |-  ( x = ( 1 - ( 1 / n ) ) -> ( x ^ j ) = ( ( 1 - ( 1 / n ) ) ^ j ) ) | 
						
							| 195 | 194 | oveq2d |  |-  ( x = ( 1 - ( 1 / n ) ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) | 
						
							| 196 | 195 | sumeq2sdv |  |-  ( x = ( 1 - ( 1 / n ) ) -> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) | 
						
							| 197 | 172 192 193 196 | fmptco |  |-  ( T. -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) = ( n e. NN |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) ) | 
						
							| 198 |  | 0zd |  |-  ( ( T. /\ n e. NN ) -> 0 e. ZZ ) | 
						
							| 199 | 9 | adantll |  |-  ( ( ( T. /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( k - 1 ) / 2 ) e. NN0 ) | 
						
							| 200 | 7 199 10 | sylancr |  |-  ( ( ( T. /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. RR ) | 
						
							| 201 | 200 | recnd |  |-  ( ( ( T. /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. CC ) | 
						
							| 202 | 201 | adantllr |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. CC ) | 
						
							| 203 |  | 1re |  |-  1 e. RR | 
						
							| 204 |  | resubcl |  |-  ( ( 1 e. RR /\ ( 1 / n ) e. RR ) -> ( 1 - ( 1 / n ) ) e. RR ) | 
						
							| 205 | 203 154 204 | sylancr |  |-  ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) e. RR ) | 
						
							| 206 | 205 | ad2antrr |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( 1 - ( 1 / n ) ) e. RR ) | 
						
							| 207 |  | simplr |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> k e. NN0 ) | 
						
							| 208 | 206 207 | reexpcld |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( 1 - ( 1 / n ) ) ^ k ) e. RR ) | 
						
							| 209 | 208 | recnd |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( 1 - ( 1 / n ) ) ^ k ) e. CC ) | 
						
							| 210 |  | nn0cn |  |-  ( k e. NN0 -> k e. CC ) | 
						
							| 211 | 210 | ad2antlr |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> k e. CC ) | 
						
							| 212 | 12 | adantll |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> k e. NN ) | 
						
							| 213 | 212 | nnne0d |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> k =/= 0 ) | 
						
							| 214 | 202 209 211 213 | div12d |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) = ( ( ( 1 - ( 1 / n ) ) ^ k ) x. ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) | 
						
							| 215 | 14 | adantll |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. CC ) | 
						
							| 216 | 209 215 | mulcomd |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( ( 1 - ( 1 / n ) ) ^ k ) x. ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) = ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) | 
						
							| 217 | 214 216 | eqtrd |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) = ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) | 
						
							| 218 | 6 217 | sylan2b |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ -. ( k = 0 \/ 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) = ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) | 
						
							| 219 | 218 | ifeq2da |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) ) | 
						
							| 220 | 205 | recnd |  |-  ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) e. CC ) | 
						
							| 221 |  | expcl |  |-  ( ( ( 1 - ( 1 / n ) ) e. CC /\ k e. NN0 ) -> ( ( 1 - ( 1 / n ) ) ^ k ) e. CC ) | 
						
							| 222 | 220 221 | sylan |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( 1 - ( 1 / n ) ) ^ k ) e. CC ) | 
						
							| 223 | 222 | mul02d |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( 0 x. ( ( 1 - ( 1 / n ) ) ^ k ) ) = 0 ) | 
						
							| 224 | 223 | ifeq1d |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , ( 0 x. ( ( 1 - ( 1 / n ) ) ^ k ) ) , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) ) | 
						
							| 225 | 219 224 | eqtr4d |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = if ( ( k = 0 \/ 2 || k ) , ( 0 x. ( ( 1 - ( 1 / n ) ) ^ k ) ) , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) ) | 
						
							| 226 |  | ovif |  |-  ( if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) = if ( ( k = 0 \/ 2 || k ) , ( 0 x. ( ( 1 - ( 1 / n ) ) ^ k ) ) , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) | 
						
							| 227 | 225 226 | eqtr4di |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = ( if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) | 
						
							| 228 |  | simpr |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 229 |  | c0ex |  |-  0 e. _V | 
						
							| 230 |  | ovex |  |-  ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) e. _V | 
						
							| 231 | 229 230 | ifex |  |-  if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. _V | 
						
							| 232 |  | eqid |  |-  ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) = ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) | 
						
							| 233 | 232 | fvmpt2 |  |-  ( ( k e. NN0 /\ if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. _V ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) | 
						
							| 234 | 228 231 233 | sylancl |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) | 
						
							| 235 |  | ovex |  |-  ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. _V | 
						
							| 236 | 229 235 | ifex |  |-  if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) e. _V | 
						
							| 237 | 141 | fvmpt2 |  |-  ( ( k e. NN0 /\ if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) e. _V ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) | 
						
							| 238 | 228 236 237 | sylancl |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) | 
						
							| 239 | 238 | oveq1d |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) = ( if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) | 
						
							| 240 | 227 234 239 | 3eqtr4d |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) | 
						
							| 241 | 240 | ralrimiva |  |-  ( ( T. /\ n e. NN ) -> A. k e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) | 
						
							| 242 |  | nfv |  |-  F/ j ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) | 
						
							| 243 |  | nffvmpt1 |  |-  F/_ k ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) | 
						
							| 244 |  | nffvmpt1 |  |-  F/_ k ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) | 
						
							| 245 |  | nfcv |  |-  F/_ k x. | 
						
							| 246 |  | nfcv |  |-  F/_ k ( ( 1 - ( 1 / n ) ) ^ j ) | 
						
							| 247 | 244 245 246 | nfov |  |-  F/_ k ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) | 
						
							| 248 | 243 247 | nfeq |  |-  F/ k ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) | 
						
							| 249 |  | fveq2 |  |-  ( k = j -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) | 
						
							| 250 |  | fveq2 |  |-  ( k = j -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 251 |  | oveq2 |  |-  ( k = j -> ( ( 1 - ( 1 / n ) ) ^ k ) = ( ( 1 - ( 1 / n ) ) ^ j ) ) | 
						
							| 252 | 250 251 | oveq12d |  |-  ( k = j -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) | 
						
							| 253 | 249 252 | eqeq12d |  |-  ( k = j -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) <-> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) ) | 
						
							| 254 | 242 248 253 | cbvralw |  |-  ( A. k e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) <-> A. j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) | 
						
							| 255 | 241 254 | sylib |  |-  ( ( T. /\ n e. NN ) -> A. j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) | 
						
							| 256 | 255 | r19.21bi |  |-  ( ( ( T. /\ n e. NN ) /\ j e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) | 
						
							| 257 |  | 0cnd |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( k = 0 \/ 2 || k ) ) -> 0 e. CC ) | 
						
							| 258 | 208 212 | nndivred |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) e. RR ) | 
						
							| 259 | 258 | recnd |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) e. CC ) | 
						
							| 260 | 202 259 | mulcld |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) e. CC ) | 
						
							| 261 | 6 260 | sylan2b |  |-  ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ -. ( k = 0 \/ 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) e. CC ) | 
						
							| 262 | 257 261 | ifclda |  |-  ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. CC ) | 
						
							| 263 | 262 | fmpttd |  |-  ( ( T. /\ n e. NN ) -> ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) : NN0 --> CC ) | 
						
							| 264 | 263 | ffvelcdmda |  |-  ( ( ( T. /\ n e. NN ) /\ j e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) e. CC ) | 
						
							| 265 | 256 264 | eqeltrrd |  |-  ( ( ( T. /\ n e. NN ) /\ j e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) e. CC ) | 
						
							| 266 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 267 | 266 | a1i |  |-  ( ( T. /\ n e. NN ) -> 0 e. NN0 ) | 
						
							| 268 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 269 |  | seqeq1 |  |-  ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) = seq 1 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ) | 
						
							| 270 | 268 269 | ax-mp |  |-  seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) = seq 1 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) | 
						
							| 271 |  | 1zzd |  |-  ( ( T. /\ n e. NN ) -> 1 e. ZZ ) | 
						
							| 272 |  | elnnuz |  |-  ( j e. NN <-> j e. ( ZZ>= ` 1 ) ) | 
						
							| 273 |  | nnne0 |  |-  ( k e. NN -> k =/= 0 ) | 
						
							| 274 | 273 | neneqd |  |-  ( k e. NN -> -. k = 0 ) | 
						
							| 275 |  | biorf |  |-  ( -. k = 0 -> ( 2 || k <-> ( k = 0 \/ 2 || k ) ) ) | 
						
							| 276 | 274 275 | syl |  |-  ( k e. NN -> ( 2 || k <-> ( k = 0 \/ 2 || k ) ) ) | 
						
							| 277 | 276 | bicomd |  |-  ( k e. NN -> ( ( k = 0 \/ 2 || k ) <-> 2 || k ) ) | 
						
							| 278 | 277 | ifbid |  |-  ( k e. NN -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) | 
						
							| 279 | 91 231 233 | sylancl |  |-  ( k e. NN -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) | 
						
							| 280 | 229 230 | ifex |  |-  if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. _V | 
						
							| 281 |  | eqid |  |-  ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) = ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) | 
						
							| 282 | 281 | fvmpt2 |  |-  ( ( k e. NN /\ if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. _V ) -> ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) | 
						
							| 283 | 280 282 | mpan2 |  |-  ( k e. NN -> ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) | 
						
							| 284 | 278 279 283 | 3eqtr4d |  |-  ( k e. NN -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) ) | 
						
							| 285 | 284 | rgen |  |-  A. k e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) | 
						
							| 286 | 285 | a1i |  |-  ( ( T. /\ n e. NN ) -> A. k e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) ) | 
						
							| 287 |  | nfv |  |-  F/ j ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) | 
						
							| 288 |  | nffvmpt1 |  |-  F/_ k ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) | 
						
							| 289 | 243 288 | nfeq |  |-  F/ k ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) | 
						
							| 290 |  | fveq2 |  |-  ( k = j -> ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) | 
						
							| 291 | 249 290 | eqeq12d |  |-  ( k = j -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) <-> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) ) | 
						
							| 292 | 287 289 291 | cbvralw |  |-  ( A. k e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) <-> A. j e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) | 
						
							| 293 | 286 292 | sylib |  |-  ( ( T. /\ n e. NN ) -> A. j e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) | 
						
							| 294 | 293 | r19.21bi |  |-  ( ( ( T. /\ n e. NN ) /\ j e. NN ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) | 
						
							| 295 | 272 294 | sylan2br |  |-  ( ( ( T. /\ n e. NN ) /\ j e. ( ZZ>= ` 1 ) ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) | 
						
							| 296 | 271 295 | seqfeq |  |-  ( ( T. /\ n e. NN ) -> seq 1 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) = seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ) | 
						
							| 297 | 154 163 168 | abssubge0d |  |-  ( ( T. /\ n e. NN ) -> ( abs ` ( 1 - ( 1 / n ) ) ) = ( 1 - ( 1 / n ) ) ) | 
						
							| 298 |  | ltsubrp |  |-  ( ( 1 e. RR /\ ( 1 / n ) e. RR+ ) -> ( 1 - ( 1 / n ) ) < 1 ) | 
						
							| 299 | 203 153 298 | sylancr |  |-  ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) < 1 ) | 
						
							| 300 | 297 299 | eqbrtrd |  |-  ( ( T. /\ n e. NN ) -> ( abs ` ( 1 - ( 1 / n ) ) ) < 1 ) | 
						
							| 301 | 281 | atantayl2 |  |-  ( ( ( 1 - ( 1 / n ) ) e. CC /\ ( abs ` ( 1 - ( 1 / n ) ) ) < 1 ) -> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) | 
						
							| 302 | 220 300 301 | syl2anc |  |-  ( ( T. /\ n e. NN ) -> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) | 
						
							| 303 | 296 302 | eqbrtrd |  |-  ( ( T. /\ n e. NN ) -> seq 1 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) | 
						
							| 304 | 270 303 | eqbrtrid |  |-  ( ( T. /\ n e. NN ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) | 
						
							| 305 | 2 267 264 304 | clim2ser2 |  |-  ( ( T. /\ n e. NN ) -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( ( arctan ` ( 1 - ( 1 / n ) ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) ) ) | 
						
							| 306 |  | 0z |  |-  0 e. ZZ | 
						
							| 307 |  | seq1 |  |-  ( 0 e. ZZ -> ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` 0 ) ) | 
						
							| 308 | 306 307 | ax-mp |  |-  ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` 0 ) | 
						
							| 309 |  | iftrue |  |-  ( ( k = 0 \/ 2 || k ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = 0 ) | 
						
							| 310 | 309 | orcs |  |-  ( k = 0 -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = 0 ) | 
						
							| 311 | 310 232 229 | fvmpt |  |-  ( 0 e. NN0 -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` 0 ) = 0 ) | 
						
							| 312 | 266 311 | ax-mp |  |-  ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` 0 ) = 0 | 
						
							| 313 | 308 312 | eqtri |  |-  ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) = 0 | 
						
							| 314 | 313 | oveq2i |  |-  ( ( arctan ` ( 1 - ( 1 / n ) ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) ) = ( ( arctan ` ( 1 - ( 1 / n ) ) ) + 0 ) | 
						
							| 315 |  | atanrecl |  |-  ( ( 1 - ( 1 / n ) ) e. RR -> ( arctan ` ( 1 - ( 1 / n ) ) ) e. RR ) | 
						
							| 316 | 205 315 | syl |  |-  ( ( T. /\ n e. NN ) -> ( arctan ` ( 1 - ( 1 / n ) ) ) e. RR ) | 
						
							| 317 | 316 | recnd |  |-  ( ( T. /\ n e. NN ) -> ( arctan ` ( 1 - ( 1 / n ) ) ) e. CC ) | 
						
							| 318 | 317 | addridd |  |-  ( ( T. /\ n e. NN ) -> ( ( arctan ` ( 1 - ( 1 / n ) ) ) + 0 ) = ( arctan ` ( 1 - ( 1 / n ) ) ) ) | 
						
							| 319 | 314 318 | eqtrid |  |-  ( ( T. /\ n e. NN ) -> ( ( arctan ` ( 1 - ( 1 / n ) ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) ) = ( arctan ` ( 1 - ( 1 / n ) ) ) ) | 
						
							| 320 | 305 319 | breqtrd |  |-  ( ( T. /\ n e. NN ) -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) | 
						
							| 321 | 2 198 256 265 320 | isumclim |  |-  ( ( T. /\ n e. NN ) -> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) = ( arctan ` ( 1 - ( 1 / n ) ) ) ) | 
						
							| 322 | 321 | mpteq2dva |  |-  ( T. -> ( n e. NN |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) = ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ) | 
						
							| 323 | 197 322 | eqtrd |  |-  ( T. -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) = ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ) | 
						
							| 324 |  | oveq1 |  |-  ( x = 1 -> ( x ^ j ) = ( 1 ^ j ) ) | 
						
							| 325 |  | nn0z |  |-  ( j e. NN0 -> j e. ZZ ) | 
						
							| 326 |  | 1exp |  |-  ( j e. ZZ -> ( 1 ^ j ) = 1 ) | 
						
							| 327 | 325 326 | syl |  |-  ( j e. NN0 -> ( 1 ^ j ) = 1 ) | 
						
							| 328 | 324 327 | sylan9eq |  |-  ( ( x = 1 /\ j e. NN0 ) -> ( x ^ j ) = 1 ) | 
						
							| 329 | 328 | oveq2d |  |-  ( ( x = 1 /\ j e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. 1 ) ) | 
						
							| 330 | 18 | mptru |  |-  ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) : NN0 --> CC | 
						
							| 331 | 330 | ffvelcdmi |  |-  ( j e. NN0 -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) e. CC ) | 
						
							| 332 | 331 | mulridd |  |-  ( j e. NN0 -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. 1 ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 333 | 332 | adantl |  |-  ( ( x = 1 /\ j e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. 1 ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 334 | 329 333 | eqtrd |  |-  ( ( x = 1 /\ j e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 335 | 334 | sumeq2dv |  |-  ( x = 1 -> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 336 |  | sumex |  |-  sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) e. _V | 
						
							| 337 | 335 149 336 | fvmpt |  |-  ( 1 e. ( 0 [,] 1 ) -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) ` 1 ) = sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 338 | 189 337 | mp1i |  |-  ( T. -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) ` 1 ) = sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 339 | 191 323 338 | 3brtr3d |  |-  ( T. -> ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ~~> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) | 
						
							| 340 |  | eqid |  |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 341 |  | eqid |  |-  { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } = { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } | 
						
							| 342 | 340 341 | atancn |  |-  ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) e. ( { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -cn-> CC ) | 
						
							| 343 | 342 | a1i |  |-  ( T. -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) e. ( { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -cn-> CC ) ) | 
						
							| 344 |  | unitssre |  |-  ( 0 [,] 1 ) C_ RR | 
						
							| 345 | 340 341 | ressatans |  |-  RR C_ { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } | 
						
							| 346 | 344 345 | sstri |  |-  ( 0 [,] 1 ) C_ { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } | 
						
							| 347 |  | fss |  |-  ( ( ( n e. NN |-> ( 1 - ( 1 / n ) ) ) : NN --> ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) : NN --> { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) | 
						
							| 348 | 173 346 347 | sylancl |  |-  ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) : NN --> { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) | 
						
							| 349 | 345 203 | sselii |  |-  1 e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } | 
						
							| 350 | 349 | a1i |  |-  ( T. -> 1 e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) | 
						
							| 351 | 75 76 343 348 188 350 | climcncf |  |-  ( T. -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) ~~> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` 1 ) ) | 
						
							| 352 | 346 172 | sselid |  |-  ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) | 
						
							| 353 |  | cncff |  |-  ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) e. ( { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -cn-> CC ) -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) : { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } --> CC ) | 
						
							| 354 | 342 353 | mp1i |  |-  ( T. -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) : { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } --> CC ) | 
						
							| 355 | 354 | feqmptd |  |-  ( T. -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) = ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |-> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` k ) ) ) | 
						
							| 356 |  | fvres |  |-  ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` k ) = ( arctan ` k ) ) | 
						
							| 357 | 356 | mpteq2ia |  |-  ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |-> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` k ) ) = ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |-> ( arctan ` k ) ) | 
						
							| 358 | 355 357 | eqtrdi |  |-  ( T. -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) = ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |-> ( arctan ` k ) ) ) | 
						
							| 359 |  | fveq2 |  |-  ( k = ( 1 - ( 1 / n ) ) -> ( arctan ` k ) = ( arctan ` ( 1 - ( 1 / n ) ) ) ) | 
						
							| 360 | 352 192 358 359 | fmptco |  |-  ( T. -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) = ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ) | 
						
							| 361 |  | fvres |  |-  ( 1 e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` 1 ) = ( arctan ` 1 ) ) | 
						
							| 362 | 349 361 | mp1i |  |-  ( T. -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` 1 ) = ( arctan ` 1 ) ) | 
						
							| 363 |  | atan1 |  |-  ( arctan ` 1 ) = ( _pi / 4 ) | 
						
							| 364 | 362 363 | eqtrdi |  |-  ( T. -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` 1 ) = ( _pi / 4 ) ) | 
						
							| 365 | 351 360 364 | 3brtr3d |  |-  ( T. -> ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ~~> ( _pi / 4 ) ) | 
						
							| 366 |  | climuni |  |-  ( ( ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ~~> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) /\ ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ~~> ( _pi / 4 ) ) -> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) = ( _pi / 4 ) ) | 
						
							| 367 | 339 365 366 | syl2anc |  |-  ( T. -> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) = ( _pi / 4 ) ) | 
						
							| 368 | 148 367 | breqtrd |  |-  ( T. -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( _pi / 4 ) ) | 
						
							| 369 | 368 | mptru |  |-  seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( _pi / 4 ) | 
						
							| 370 |  | ovex |  |-  ( _pi / 4 ) e. _V | 
						
							| 371 | 1 141 370 | leibpilem2 |  |-  ( seq 0 ( + , F ) ~~> ( _pi / 4 ) <-> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( _pi / 4 ) ) | 
						
							| 372 | 369 371 | mpbir |  |-  seq 0 ( + , F ) ~~> ( _pi / 4 ) |