| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atansopn.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
| 2 |
|
atansopn.s |
|- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
| 3 |
|
ax-resscn |
|- RR C_ CC |
| 4 |
|
1re |
|- 1 e. RR |
| 5 |
|
resqcl |
|- ( y e. RR -> ( y ^ 2 ) e. RR ) |
| 6 |
|
readdcl |
|- ( ( 1 e. RR /\ ( y ^ 2 ) e. RR ) -> ( 1 + ( y ^ 2 ) ) e. RR ) |
| 7 |
4 5 6
|
sylancr |
|- ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. RR ) |
| 8 |
7
|
recnd |
|- ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. CC ) |
| 9 |
4
|
a1i |
|- ( y e. RR -> 1 e. RR ) |
| 10 |
|
0lt1 |
|- 0 < 1 |
| 11 |
10
|
a1i |
|- ( y e. RR -> 0 < 1 ) |
| 12 |
|
sqge0 |
|- ( y e. RR -> 0 <_ ( y ^ 2 ) ) |
| 13 |
9 5 11 12
|
addgtge0d |
|- ( y e. RR -> 0 < ( 1 + ( y ^ 2 ) ) ) |
| 14 |
|
0re |
|- 0 e. RR |
| 15 |
|
ltnle |
|- ( ( 0 e. RR /\ ( 1 + ( y ^ 2 ) ) e. RR ) -> ( 0 < ( 1 + ( y ^ 2 ) ) <-> -. ( 1 + ( y ^ 2 ) ) <_ 0 ) ) |
| 16 |
14 7 15
|
sylancr |
|- ( y e. RR -> ( 0 < ( 1 + ( y ^ 2 ) ) <-> -. ( 1 + ( y ^ 2 ) ) <_ 0 ) ) |
| 17 |
13 16
|
mpbid |
|- ( y e. RR -> -. ( 1 + ( y ^ 2 ) ) <_ 0 ) |
| 18 |
|
mnfxr |
|- -oo e. RR* |
| 19 |
|
elioc2 |
|- ( ( -oo e. RR* /\ 0 e. RR ) -> ( ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) <-> ( ( 1 + ( y ^ 2 ) ) e. RR /\ -oo < ( 1 + ( y ^ 2 ) ) /\ ( 1 + ( y ^ 2 ) ) <_ 0 ) ) ) |
| 20 |
18 14 19
|
mp2an |
|- ( ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) <-> ( ( 1 + ( y ^ 2 ) ) e. RR /\ -oo < ( 1 + ( y ^ 2 ) ) /\ ( 1 + ( y ^ 2 ) ) <_ 0 ) ) |
| 21 |
20
|
simp3bi |
|- ( ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) -> ( 1 + ( y ^ 2 ) ) <_ 0 ) |
| 22 |
17 21
|
nsyl |
|- ( y e. RR -> -. ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) ) |
| 23 |
8 22
|
eldifd |
|- ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) ) |
| 24 |
23 1
|
eleqtrrdi |
|- ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. D ) |
| 25 |
24
|
rgen |
|- A. y e. RR ( 1 + ( y ^ 2 ) ) e. D |
| 26 |
|
ssrab |
|- ( RR C_ { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } <-> ( RR C_ CC /\ A. y e. RR ( 1 + ( y ^ 2 ) ) e. D ) ) |
| 27 |
3 25 26
|
mpbir2an |
|- RR C_ { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
| 28 |
27 2
|
sseqtrri |
|- RR C_ S |