| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atansopn.d |  |-  D = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 2 |  | atansopn.s |  |-  S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } | 
						
							| 3 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 4 | 3 | a1i |  |-  ( T. -> CC e. { RR , CC } ) | 
						
							| 5 |  | ax-1cn |  |-  1 e. CC | 
						
							| 6 |  | ax-icn |  |-  _i e. CC | 
						
							| 7 | 1 2 | atansssdm |  |-  S C_ dom arctan | 
						
							| 8 |  | simpr |  |-  ( ( T. /\ x e. S ) -> x e. S ) | 
						
							| 9 | 7 8 | sselid |  |-  ( ( T. /\ x e. S ) -> x e. dom arctan ) | 
						
							| 10 |  | atandm2 |  |-  ( x e. dom arctan <-> ( x e. CC /\ ( 1 - ( _i x. x ) ) =/= 0 /\ ( 1 + ( _i x. x ) ) =/= 0 ) ) | 
						
							| 11 | 9 10 | sylib |  |-  ( ( T. /\ x e. S ) -> ( x e. CC /\ ( 1 - ( _i x. x ) ) =/= 0 /\ ( 1 + ( _i x. x ) ) =/= 0 ) ) | 
						
							| 12 | 11 | simp1d |  |-  ( ( T. /\ x e. S ) -> x e. CC ) | 
						
							| 13 |  | mulcl |  |-  ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) | 
						
							| 14 | 6 12 13 | sylancr |  |-  ( ( T. /\ x e. S ) -> ( _i x. x ) e. CC ) | 
						
							| 15 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. x ) e. CC ) -> ( 1 - ( _i x. x ) ) e. CC ) | 
						
							| 16 | 5 14 15 | sylancr |  |-  ( ( T. /\ x e. S ) -> ( 1 - ( _i x. x ) ) e. CC ) | 
						
							| 17 | 11 | simp2d |  |-  ( ( T. /\ x e. S ) -> ( 1 - ( _i x. x ) ) =/= 0 ) | 
						
							| 18 | 16 17 | logcld |  |-  ( ( T. /\ x e. S ) -> ( log ` ( 1 - ( _i x. x ) ) ) e. CC ) | 
						
							| 19 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. x ) e. CC ) -> ( 1 + ( _i x. x ) ) e. CC ) | 
						
							| 20 | 5 14 19 | sylancr |  |-  ( ( T. /\ x e. S ) -> ( 1 + ( _i x. x ) ) e. CC ) | 
						
							| 21 | 11 | simp3d |  |-  ( ( T. /\ x e. S ) -> ( 1 + ( _i x. x ) ) =/= 0 ) | 
						
							| 22 | 20 21 | logcld |  |-  ( ( T. /\ x e. S ) -> ( log ` ( 1 + ( _i x. x ) ) ) e. CC ) | 
						
							| 23 | 18 22 | subcld |  |-  ( ( T. /\ x e. S ) -> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) e. CC ) | 
						
							| 24 |  | ovexd |  |-  ( ( T. /\ x e. S ) -> ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) e. _V ) | 
						
							| 25 |  | ovexd |  |-  ( ( T. /\ x e. S ) -> ( 1 / ( x + _i ) ) e. _V ) | 
						
							| 26 | 1 2 | atans2 |  |-  ( x e. S <-> ( x e. CC /\ ( 1 - ( _i x. x ) ) e. D /\ ( 1 + ( _i x. x ) ) e. D ) ) | 
						
							| 27 | 26 | simp2bi |  |-  ( x e. S -> ( 1 - ( _i x. x ) ) e. D ) | 
						
							| 28 | 27 | adantl |  |-  ( ( T. /\ x e. S ) -> ( 1 - ( _i x. x ) ) e. D ) | 
						
							| 29 |  | negex |  |-  -u _i e. _V | 
						
							| 30 | 29 | a1i |  |-  ( ( T. /\ x e. S ) -> -u _i e. _V ) | 
						
							| 31 | 1 | logdmss |  |-  D C_ ( CC \ { 0 } ) | 
						
							| 32 |  | simpr |  |-  ( ( T. /\ y e. D ) -> y e. D ) | 
						
							| 33 | 31 32 | sselid |  |-  ( ( T. /\ y e. D ) -> y e. ( CC \ { 0 } ) ) | 
						
							| 34 |  | logf1o |  |-  log : ( CC \ { 0 } ) -1-1-onto-> ran log | 
						
							| 35 |  | f1of |  |-  ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) | 
						
							| 36 | 34 35 | ax-mp |  |-  log : ( CC \ { 0 } ) --> ran log | 
						
							| 37 | 36 | ffvelcdmi |  |-  ( y e. ( CC \ { 0 } ) -> ( log ` y ) e. ran log ) | 
						
							| 38 |  | logrncn |  |-  ( ( log ` y ) e. ran log -> ( log ` y ) e. CC ) | 
						
							| 39 | 33 37 38 | 3syl |  |-  ( ( T. /\ y e. D ) -> ( log ` y ) e. CC ) | 
						
							| 40 |  | ovexd |  |-  ( ( T. /\ y e. D ) -> ( 1 / y ) e. _V ) | 
						
							| 41 | 6 | a1i |  |-  ( T. -> _i e. CC ) | 
						
							| 42 | 41 13 | sylan |  |-  ( ( T. /\ x e. CC ) -> ( _i x. x ) e. CC ) | 
						
							| 43 | 5 42 15 | sylancr |  |-  ( ( T. /\ x e. CC ) -> ( 1 - ( _i x. x ) ) e. CC ) | 
						
							| 44 | 29 | a1i |  |-  ( ( T. /\ x e. CC ) -> -u _i e. _V ) | 
						
							| 45 |  | 1cnd |  |-  ( ( T. /\ x e. CC ) -> 1 e. CC ) | 
						
							| 46 |  | 0cnd |  |-  ( ( T. /\ x e. CC ) -> 0 e. CC ) | 
						
							| 47 |  | 1cnd |  |-  ( T. -> 1 e. CC ) | 
						
							| 48 | 4 47 | dvmptc |  |-  ( T. -> ( CC _D ( x e. CC |-> 1 ) ) = ( x e. CC |-> 0 ) ) | 
						
							| 49 | 6 | a1i |  |-  ( ( T. /\ x e. CC ) -> _i e. CC ) | 
						
							| 50 |  | simpr |  |-  ( ( T. /\ x e. CC ) -> x e. CC ) | 
						
							| 51 | 4 | dvmptid |  |-  ( T. -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) | 
						
							| 52 | 4 50 45 51 41 | dvmptcmul |  |-  ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> ( _i x. 1 ) ) ) | 
						
							| 53 | 6 | mulridi |  |-  ( _i x. 1 ) = _i | 
						
							| 54 | 53 | mpteq2i |  |-  ( x e. CC |-> ( _i x. 1 ) ) = ( x e. CC |-> _i ) | 
						
							| 55 | 52 54 | eqtrdi |  |-  ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> _i ) ) | 
						
							| 56 | 4 45 46 48 42 49 55 | dvmptsub |  |-  ( T. -> ( CC _D ( x e. CC |-> ( 1 - ( _i x. x ) ) ) ) = ( x e. CC |-> ( 0 - _i ) ) ) | 
						
							| 57 |  | df-neg |  |-  -u _i = ( 0 - _i ) | 
						
							| 58 | 57 | mpteq2i |  |-  ( x e. CC |-> -u _i ) = ( x e. CC |-> ( 0 - _i ) ) | 
						
							| 59 | 56 58 | eqtr4di |  |-  ( T. -> ( CC _D ( x e. CC |-> ( 1 - ( _i x. x ) ) ) ) = ( x e. CC |-> -u _i ) ) | 
						
							| 60 | 2 | ssrab3 |  |-  S C_ CC | 
						
							| 61 | 60 | a1i |  |-  ( T. -> S C_ CC ) | 
						
							| 62 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 63 | 62 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 64 | 63 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 65 | 1 2 | atansopn |  |-  S e. ( TopOpen ` CCfld ) | 
						
							| 66 | 65 | a1i |  |-  ( T. -> S e. ( TopOpen ` CCfld ) ) | 
						
							| 67 | 4 43 44 59 61 64 62 66 | dvmptres |  |-  ( T. -> ( CC _D ( x e. S |-> ( 1 - ( _i x. x ) ) ) ) = ( x e. S |-> -u _i ) ) | 
						
							| 68 |  | fssres |  |-  ( ( log : ( CC \ { 0 } ) --> ran log /\ D C_ ( CC \ { 0 } ) ) -> ( log |` D ) : D --> ran log ) | 
						
							| 69 | 36 31 68 | mp2an |  |-  ( log |` D ) : D --> ran log | 
						
							| 70 | 69 | a1i |  |-  ( T. -> ( log |` D ) : D --> ran log ) | 
						
							| 71 | 70 | feqmptd |  |-  ( T. -> ( log |` D ) = ( y e. D |-> ( ( log |` D ) ` y ) ) ) | 
						
							| 72 |  | fvres |  |-  ( y e. D -> ( ( log |` D ) ` y ) = ( log ` y ) ) | 
						
							| 73 | 72 | mpteq2ia |  |-  ( y e. D |-> ( ( log |` D ) ` y ) ) = ( y e. D |-> ( log ` y ) ) | 
						
							| 74 | 71 73 | eqtr2di |  |-  ( T. -> ( y e. D |-> ( log ` y ) ) = ( log |` D ) ) | 
						
							| 75 | 74 | oveq2d |  |-  ( T. -> ( CC _D ( y e. D |-> ( log ` y ) ) ) = ( CC _D ( log |` D ) ) ) | 
						
							| 76 | 1 | dvlog |  |-  ( CC _D ( log |` D ) ) = ( y e. D |-> ( 1 / y ) ) | 
						
							| 77 | 75 76 | eqtrdi |  |-  ( T. -> ( CC _D ( y e. D |-> ( log ` y ) ) ) = ( y e. D |-> ( 1 / y ) ) ) | 
						
							| 78 |  | fveq2 |  |-  ( y = ( 1 - ( _i x. x ) ) -> ( log ` y ) = ( log ` ( 1 - ( _i x. x ) ) ) ) | 
						
							| 79 |  | oveq2 |  |-  ( y = ( 1 - ( _i x. x ) ) -> ( 1 / y ) = ( 1 / ( 1 - ( _i x. x ) ) ) ) | 
						
							| 80 | 4 4 28 30 39 40 67 77 78 79 | dvmptco |  |-  ( T. -> ( CC _D ( x e. S |-> ( log ` ( 1 - ( _i x. x ) ) ) ) ) = ( x e. S |-> ( ( 1 / ( 1 - ( _i x. x ) ) ) x. -u _i ) ) ) | 
						
							| 81 |  | irec |  |-  ( 1 / _i ) = -u _i | 
						
							| 82 | 81 | oveq2i |  |-  ( ( 1 / ( 1 - ( _i x. x ) ) ) x. ( 1 / _i ) ) = ( ( 1 / ( 1 - ( _i x. x ) ) ) x. -u _i ) | 
						
							| 83 | 6 | a1i |  |-  ( ( T. /\ x e. S ) -> _i e. CC ) | 
						
							| 84 |  | ine0 |  |-  _i =/= 0 | 
						
							| 85 | 84 | a1i |  |-  ( ( T. /\ x e. S ) -> _i =/= 0 ) | 
						
							| 86 | 16 83 17 85 | recdiv2d |  |-  ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 - ( _i x. x ) ) ) / _i ) = ( 1 / ( ( 1 - ( _i x. x ) ) x. _i ) ) ) | 
						
							| 87 | 16 17 | reccld |  |-  ( ( T. /\ x e. S ) -> ( 1 / ( 1 - ( _i x. x ) ) ) e. CC ) | 
						
							| 88 | 87 83 85 | divrecd |  |-  ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 - ( _i x. x ) ) ) / _i ) = ( ( 1 / ( 1 - ( _i x. x ) ) ) x. ( 1 / _i ) ) ) | 
						
							| 89 |  | 1cnd |  |-  ( ( T. /\ x e. S ) -> 1 e. CC ) | 
						
							| 90 | 89 14 83 | subdird |  |-  ( ( T. /\ x e. S ) -> ( ( 1 - ( _i x. x ) ) x. _i ) = ( ( 1 x. _i ) - ( ( _i x. x ) x. _i ) ) ) | 
						
							| 91 | 6 | mullidi |  |-  ( 1 x. _i ) = _i | 
						
							| 92 | 91 | a1i |  |-  ( ( T. /\ x e. S ) -> ( 1 x. _i ) = _i ) | 
						
							| 93 | 83 12 83 | mul32d |  |-  ( ( T. /\ x e. S ) -> ( ( _i x. x ) x. _i ) = ( ( _i x. _i ) x. x ) ) | 
						
							| 94 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 95 | 94 | oveq1i |  |-  ( ( _i x. _i ) x. x ) = ( -u 1 x. x ) | 
						
							| 96 | 12 | mulm1d |  |-  ( ( T. /\ x e. S ) -> ( -u 1 x. x ) = -u x ) | 
						
							| 97 | 95 96 | eqtrid |  |-  ( ( T. /\ x e. S ) -> ( ( _i x. _i ) x. x ) = -u x ) | 
						
							| 98 | 93 97 | eqtrd |  |-  ( ( T. /\ x e. S ) -> ( ( _i x. x ) x. _i ) = -u x ) | 
						
							| 99 | 92 98 | oveq12d |  |-  ( ( T. /\ x e. S ) -> ( ( 1 x. _i ) - ( ( _i x. x ) x. _i ) ) = ( _i - -u x ) ) | 
						
							| 100 |  | subneg |  |-  ( ( _i e. CC /\ x e. CC ) -> ( _i - -u x ) = ( _i + x ) ) | 
						
							| 101 | 6 12 100 | sylancr |  |-  ( ( T. /\ x e. S ) -> ( _i - -u x ) = ( _i + x ) ) | 
						
							| 102 | 90 99 101 | 3eqtrd |  |-  ( ( T. /\ x e. S ) -> ( ( 1 - ( _i x. x ) ) x. _i ) = ( _i + x ) ) | 
						
							| 103 | 83 12 102 | comraddd |  |-  ( ( T. /\ x e. S ) -> ( ( 1 - ( _i x. x ) ) x. _i ) = ( x + _i ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( ( T. /\ x e. S ) -> ( 1 / ( ( 1 - ( _i x. x ) ) x. _i ) ) = ( 1 / ( x + _i ) ) ) | 
						
							| 105 | 86 88 104 | 3eqtr3d |  |-  ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 - ( _i x. x ) ) ) x. ( 1 / _i ) ) = ( 1 / ( x + _i ) ) ) | 
						
							| 106 | 82 105 | eqtr3id |  |-  ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 - ( _i x. x ) ) ) x. -u _i ) = ( 1 / ( x + _i ) ) ) | 
						
							| 107 | 106 | mpteq2dva |  |-  ( T. -> ( x e. S |-> ( ( 1 / ( 1 - ( _i x. x ) ) ) x. -u _i ) ) = ( x e. S |-> ( 1 / ( x + _i ) ) ) ) | 
						
							| 108 | 80 107 | eqtrd |  |-  ( T. -> ( CC _D ( x e. S |-> ( log ` ( 1 - ( _i x. x ) ) ) ) ) = ( x e. S |-> ( 1 / ( x + _i ) ) ) ) | 
						
							| 109 |  | ovexd |  |-  ( ( T. /\ x e. S ) -> ( 1 / ( x - _i ) ) e. _V ) | 
						
							| 110 | 26 | simp3bi |  |-  ( x e. S -> ( 1 + ( _i x. x ) ) e. D ) | 
						
							| 111 | 110 | adantl |  |-  ( ( T. /\ x e. S ) -> ( 1 + ( _i x. x ) ) e. D ) | 
						
							| 112 | 5 42 19 | sylancr |  |-  ( ( T. /\ x e. CC ) -> ( 1 + ( _i x. x ) ) e. CC ) | 
						
							| 113 | 4 45 46 48 42 49 55 | dvmptadd |  |-  ( T. -> ( CC _D ( x e. CC |-> ( 1 + ( _i x. x ) ) ) ) = ( x e. CC |-> ( 0 + _i ) ) ) | 
						
							| 114 | 6 | addlidi |  |-  ( 0 + _i ) = _i | 
						
							| 115 | 114 | mpteq2i |  |-  ( x e. CC |-> ( 0 + _i ) ) = ( x e. CC |-> _i ) | 
						
							| 116 | 113 115 | eqtrdi |  |-  ( T. -> ( CC _D ( x e. CC |-> ( 1 + ( _i x. x ) ) ) ) = ( x e. CC |-> _i ) ) | 
						
							| 117 | 4 112 49 116 61 64 62 66 | dvmptres |  |-  ( T. -> ( CC _D ( x e. S |-> ( 1 + ( _i x. x ) ) ) ) = ( x e. S |-> _i ) ) | 
						
							| 118 |  | fveq2 |  |-  ( y = ( 1 + ( _i x. x ) ) -> ( log ` y ) = ( log ` ( 1 + ( _i x. x ) ) ) ) | 
						
							| 119 |  | oveq2 |  |-  ( y = ( 1 + ( _i x. x ) ) -> ( 1 / y ) = ( 1 / ( 1 + ( _i x. x ) ) ) ) | 
						
							| 120 | 4 4 111 83 39 40 117 77 118 119 | dvmptco |  |-  ( T. -> ( CC _D ( x e. S |-> ( log ` ( 1 + ( _i x. x ) ) ) ) ) = ( x e. S |-> ( ( 1 / ( 1 + ( _i x. x ) ) ) x. _i ) ) ) | 
						
							| 121 | 89 20 83 21 85 | divdiv2d |  |-  ( ( T. /\ x e. S ) -> ( 1 / ( ( 1 + ( _i x. x ) ) / _i ) ) = ( ( 1 x. _i ) / ( 1 + ( _i x. x ) ) ) ) | 
						
							| 122 | 89 14 83 85 | divdird |  |-  ( ( T. /\ x e. S ) -> ( ( 1 + ( _i x. x ) ) / _i ) = ( ( 1 / _i ) + ( ( _i x. x ) / _i ) ) ) | 
						
							| 123 | 81 | a1i |  |-  ( ( T. /\ x e. S ) -> ( 1 / _i ) = -u _i ) | 
						
							| 124 | 12 83 85 | divcan3d |  |-  ( ( T. /\ x e. S ) -> ( ( _i x. x ) / _i ) = x ) | 
						
							| 125 | 123 124 | oveq12d |  |-  ( ( T. /\ x e. S ) -> ( ( 1 / _i ) + ( ( _i x. x ) / _i ) ) = ( -u _i + x ) ) | 
						
							| 126 |  | negicn |  |-  -u _i e. CC | 
						
							| 127 |  | addcom |  |-  ( ( -u _i e. CC /\ x e. CC ) -> ( -u _i + x ) = ( x + -u _i ) ) | 
						
							| 128 | 126 12 127 | sylancr |  |-  ( ( T. /\ x e. S ) -> ( -u _i + x ) = ( x + -u _i ) ) | 
						
							| 129 |  | negsub |  |-  ( ( x e. CC /\ _i e. CC ) -> ( x + -u _i ) = ( x - _i ) ) | 
						
							| 130 | 12 6 129 | sylancl |  |-  ( ( T. /\ x e. S ) -> ( x + -u _i ) = ( x - _i ) ) | 
						
							| 131 | 128 130 | eqtrd |  |-  ( ( T. /\ x e. S ) -> ( -u _i + x ) = ( x - _i ) ) | 
						
							| 132 | 122 125 131 | 3eqtrd |  |-  ( ( T. /\ x e. S ) -> ( ( 1 + ( _i x. x ) ) / _i ) = ( x - _i ) ) | 
						
							| 133 | 132 | oveq2d |  |-  ( ( T. /\ x e. S ) -> ( 1 / ( ( 1 + ( _i x. x ) ) / _i ) ) = ( 1 / ( x - _i ) ) ) | 
						
							| 134 | 89 83 20 21 | div23d |  |-  ( ( T. /\ x e. S ) -> ( ( 1 x. _i ) / ( 1 + ( _i x. x ) ) ) = ( ( 1 / ( 1 + ( _i x. x ) ) ) x. _i ) ) | 
						
							| 135 | 121 133 134 | 3eqtr3rd |  |-  ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 + ( _i x. x ) ) ) x. _i ) = ( 1 / ( x - _i ) ) ) | 
						
							| 136 | 135 | mpteq2dva |  |-  ( T. -> ( x e. S |-> ( ( 1 / ( 1 + ( _i x. x ) ) ) x. _i ) ) = ( x e. S |-> ( 1 / ( x - _i ) ) ) ) | 
						
							| 137 | 120 136 | eqtrd |  |-  ( T. -> ( CC _D ( x e. S |-> ( log ` ( 1 + ( _i x. x ) ) ) ) ) = ( x e. S |-> ( 1 / ( x - _i ) ) ) ) | 
						
							| 138 | 4 18 25 108 22 109 137 | dvmptsub |  |-  ( T. -> ( CC _D ( x e. S |-> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) = ( x e. S |-> ( ( 1 / ( x + _i ) ) - ( 1 / ( x - _i ) ) ) ) ) | 
						
							| 139 |  | subcl |  |-  ( ( x e. CC /\ _i e. CC ) -> ( x - _i ) e. CC ) | 
						
							| 140 | 12 6 139 | sylancl |  |-  ( ( T. /\ x e. S ) -> ( x - _i ) e. CC ) | 
						
							| 141 |  | addcl |  |-  ( ( x e. CC /\ _i e. CC ) -> ( x + _i ) e. CC ) | 
						
							| 142 | 12 6 141 | sylancl |  |-  ( ( T. /\ x e. S ) -> ( x + _i ) e. CC ) | 
						
							| 143 | 12 | sqcld |  |-  ( ( T. /\ x e. S ) -> ( x ^ 2 ) e. CC ) | 
						
							| 144 |  | addcl |  |-  ( ( 1 e. CC /\ ( x ^ 2 ) e. CC ) -> ( 1 + ( x ^ 2 ) ) e. CC ) | 
						
							| 145 | 5 143 144 | sylancr |  |-  ( ( T. /\ x e. S ) -> ( 1 + ( x ^ 2 ) ) e. CC ) | 
						
							| 146 |  | atandm4 |  |-  ( x e. dom arctan <-> ( x e. CC /\ ( 1 + ( x ^ 2 ) ) =/= 0 ) ) | 
						
							| 147 | 146 | simprbi |  |-  ( x e. dom arctan -> ( 1 + ( x ^ 2 ) ) =/= 0 ) | 
						
							| 148 | 9 147 | syl |  |-  ( ( T. /\ x e. S ) -> ( 1 + ( x ^ 2 ) ) =/= 0 ) | 
						
							| 149 | 140 142 145 148 | divsubdird |  |-  ( ( T. /\ x e. S ) -> ( ( ( x - _i ) - ( x + _i ) ) / ( 1 + ( x ^ 2 ) ) ) = ( ( ( x - _i ) / ( 1 + ( x ^ 2 ) ) ) - ( ( x + _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) | 
						
							| 150 | 130 | oveq1d |  |-  ( ( T. /\ x e. S ) -> ( ( x + -u _i ) - ( x + _i ) ) = ( ( x - _i ) - ( x + _i ) ) ) | 
						
							| 151 | 126 | a1i |  |-  ( ( T. /\ x e. S ) -> -u _i e. CC ) | 
						
							| 152 | 12 151 83 | pnpcand |  |-  ( ( T. /\ x e. S ) -> ( ( x + -u _i ) - ( x + _i ) ) = ( -u _i - _i ) ) | 
						
							| 153 | 150 152 | eqtr3d |  |-  ( ( T. /\ x e. S ) -> ( ( x - _i ) - ( x + _i ) ) = ( -u _i - _i ) ) | 
						
							| 154 |  | 2cn |  |-  2 e. CC | 
						
							| 155 | 154 6 84 | divreci |  |-  ( 2 / _i ) = ( 2 x. ( 1 / _i ) ) | 
						
							| 156 | 81 | oveq2i |  |-  ( 2 x. ( 1 / _i ) ) = ( 2 x. -u _i ) | 
						
							| 157 | 155 156 | eqtri |  |-  ( 2 / _i ) = ( 2 x. -u _i ) | 
						
							| 158 | 126 | 2timesi |  |-  ( 2 x. -u _i ) = ( -u _i + -u _i ) | 
						
							| 159 | 126 6 | negsubi |  |-  ( -u _i + -u _i ) = ( -u _i - _i ) | 
						
							| 160 | 157 158 159 | 3eqtri |  |-  ( 2 / _i ) = ( -u _i - _i ) | 
						
							| 161 | 153 160 | eqtr4di |  |-  ( ( T. /\ x e. S ) -> ( ( x - _i ) - ( x + _i ) ) = ( 2 / _i ) ) | 
						
							| 162 | 161 | oveq1d |  |-  ( ( T. /\ x e. S ) -> ( ( ( x - _i ) - ( x + _i ) ) / ( 1 + ( x ^ 2 ) ) ) = ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) | 
						
							| 163 | 140 | mulridd |  |-  ( ( T. /\ x e. S ) -> ( ( x - _i ) x. 1 ) = ( x - _i ) ) | 
						
							| 164 | 140 142 | mulcomd |  |-  ( ( T. /\ x e. S ) -> ( ( x - _i ) x. ( x + _i ) ) = ( ( x + _i ) x. ( x - _i ) ) ) | 
						
							| 165 |  | i2 |  |-  ( _i ^ 2 ) = -u 1 | 
						
							| 166 | 165 | oveq2i |  |-  ( ( x ^ 2 ) - ( _i ^ 2 ) ) = ( ( x ^ 2 ) - -u 1 ) | 
						
							| 167 |  | subneg |  |-  ( ( ( x ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( x ^ 2 ) - -u 1 ) = ( ( x ^ 2 ) + 1 ) ) | 
						
							| 168 | 143 5 167 | sylancl |  |-  ( ( T. /\ x e. S ) -> ( ( x ^ 2 ) - -u 1 ) = ( ( x ^ 2 ) + 1 ) ) | 
						
							| 169 | 166 168 | eqtrid |  |-  ( ( T. /\ x e. S ) -> ( ( x ^ 2 ) - ( _i ^ 2 ) ) = ( ( x ^ 2 ) + 1 ) ) | 
						
							| 170 |  | subsq |  |-  ( ( x e. CC /\ _i e. CC ) -> ( ( x ^ 2 ) - ( _i ^ 2 ) ) = ( ( x + _i ) x. ( x - _i ) ) ) | 
						
							| 171 | 12 6 170 | sylancl |  |-  ( ( T. /\ x e. S ) -> ( ( x ^ 2 ) - ( _i ^ 2 ) ) = ( ( x + _i ) x. ( x - _i ) ) ) | 
						
							| 172 |  | addcom |  |-  ( ( ( x ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( x ^ 2 ) + 1 ) = ( 1 + ( x ^ 2 ) ) ) | 
						
							| 173 | 143 5 172 | sylancl |  |-  ( ( T. /\ x e. S ) -> ( ( x ^ 2 ) + 1 ) = ( 1 + ( x ^ 2 ) ) ) | 
						
							| 174 | 169 171 173 | 3eqtr3d |  |-  ( ( T. /\ x e. S ) -> ( ( x + _i ) x. ( x - _i ) ) = ( 1 + ( x ^ 2 ) ) ) | 
						
							| 175 | 164 174 | eqtrd |  |-  ( ( T. /\ x e. S ) -> ( ( x - _i ) x. ( x + _i ) ) = ( 1 + ( x ^ 2 ) ) ) | 
						
							| 176 | 163 175 | oveq12d |  |-  ( ( T. /\ x e. S ) -> ( ( ( x - _i ) x. 1 ) / ( ( x - _i ) x. ( x + _i ) ) ) = ( ( x - _i ) / ( 1 + ( x ^ 2 ) ) ) ) | 
						
							| 177 |  | subneg |  |-  ( ( x e. CC /\ _i e. CC ) -> ( x - -u _i ) = ( x + _i ) ) | 
						
							| 178 | 12 6 177 | sylancl |  |-  ( ( T. /\ x e. S ) -> ( x - -u _i ) = ( x + _i ) ) | 
						
							| 179 |  | atandm |  |-  ( x e. dom arctan <-> ( x e. CC /\ x =/= -u _i /\ x =/= _i ) ) | 
						
							| 180 | 9 179 | sylib |  |-  ( ( T. /\ x e. S ) -> ( x e. CC /\ x =/= -u _i /\ x =/= _i ) ) | 
						
							| 181 | 180 | simp2d |  |-  ( ( T. /\ x e. S ) -> x =/= -u _i ) | 
						
							| 182 |  | subeq0 |  |-  ( ( x e. CC /\ -u _i e. CC ) -> ( ( x - -u _i ) = 0 <-> x = -u _i ) ) | 
						
							| 183 | 182 | necon3bid |  |-  ( ( x e. CC /\ -u _i e. CC ) -> ( ( x - -u _i ) =/= 0 <-> x =/= -u _i ) ) | 
						
							| 184 | 12 126 183 | sylancl |  |-  ( ( T. /\ x e. S ) -> ( ( x - -u _i ) =/= 0 <-> x =/= -u _i ) ) | 
						
							| 185 | 181 184 | mpbird |  |-  ( ( T. /\ x e. S ) -> ( x - -u _i ) =/= 0 ) | 
						
							| 186 | 178 185 | eqnetrrd |  |-  ( ( T. /\ x e. S ) -> ( x + _i ) =/= 0 ) | 
						
							| 187 | 180 | simp3d |  |-  ( ( T. /\ x e. S ) -> x =/= _i ) | 
						
							| 188 |  | subeq0 |  |-  ( ( x e. CC /\ _i e. CC ) -> ( ( x - _i ) = 0 <-> x = _i ) ) | 
						
							| 189 | 188 | necon3bid |  |-  ( ( x e. CC /\ _i e. CC ) -> ( ( x - _i ) =/= 0 <-> x =/= _i ) ) | 
						
							| 190 | 12 6 189 | sylancl |  |-  ( ( T. /\ x e. S ) -> ( ( x - _i ) =/= 0 <-> x =/= _i ) ) | 
						
							| 191 | 187 190 | mpbird |  |-  ( ( T. /\ x e. S ) -> ( x - _i ) =/= 0 ) | 
						
							| 192 | 89 142 140 186 191 | divcan5d |  |-  ( ( T. /\ x e. S ) -> ( ( ( x - _i ) x. 1 ) / ( ( x - _i ) x. ( x + _i ) ) ) = ( 1 / ( x + _i ) ) ) | 
						
							| 193 | 176 192 | eqtr3d |  |-  ( ( T. /\ x e. S ) -> ( ( x - _i ) / ( 1 + ( x ^ 2 ) ) ) = ( 1 / ( x + _i ) ) ) | 
						
							| 194 | 142 | mulridd |  |-  ( ( T. /\ x e. S ) -> ( ( x + _i ) x. 1 ) = ( x + _i ) ) | 
						
							| 195 | 194 174 | oveq12d |  |-  ( ( T. /\ x e. S ) -> ( ( ( x + _i ) x. 1 ) / ( ( x + _i ) x. ( x - _i ) ) ) = ( ( x + _i ) / ( 1 + ( x ^ 2 ) ) ) ) | 
						
							| 196 | 89 140 142 191 186 | divcan5d |  |-  ( ( T. /\ x e. S ) -> ( ( ( x + _i ) x. 1 ) / ( ( x + _i ) x. ( x - _i ) ) ) = ( 1 / ( x - _i ) ) ) | 
						
							| 197 | 195 196 | eqtr3d |  |-  ( ( T. /\ x e. S ) -> ( ( x + _i ) / ( 1 + ( x ^ 2 ) ) ) = ( 1 / ( x - _i ) ) ) | 
						
							| 198 | 193 197 | oveq12d |  |-  ( ( T. /\ x e. S ) -> ( ( ( x - _i ) / ( 1 + ( x ^ 2 ) ) ) - ( ( x + _i ) / ( 1 + ( x ^ 2 ) ) ) ) = ( ( 1 / ( x + _i ) ) - ( 1 / ( x - _i ) ) ) ) | 
						
							| 199 | 149 162 198 | 3eqtr3rd |  |-  ( ( T. /\ x e. S ) -> ( ( 1 / ( x + _i ) ) - ( 1 / ( x - _i ) ) ) = ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) | 
						
							| 200 | 199 | mpteq2dva |  |-  ( T. -> ( x e. S |-> ( ( 1 / ( x + _i ) ) - ( 1 / ( x - _i ) ) ) ) = ( x e. S |-> ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) | 
						
							| 201 | 138 200 | eqtrd |  |-  ( T. -> ( CC _D ( x e. S |-> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) = ( x e. S |-> ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) | 
						
							| 202 |  | halfcl |  |-  ( _i e. CC -> ( _i / 2 ) e. CC ) | 
						
							| 203 | 6 202 | mp1i |  |-  ( T. -> ( _i / 2 ) e. CC ) | 
						
							| 204 | 4 23 24 201 203 | dvmptcmul |  |-  ( T. -> ( CC _D ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) ) | 
						
							| 205 |  | df-atan |  |-  arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) | 
						
							| 206 | 205 | reseq1i |  |-  ( arctan |` S ) = ( ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |` S ) | 
						
							| 207 |  | atanf |  |-  arctan : ( CC \ { -u _i , _i } ) --> CC | 
						
							| 208 | 207 | fdmi |  |-  dom arctan = ( CC \ { -u _i , _i } ) | 
						
							| 209 | 7 208 | sseqtri |  |-  S C_ ( CC \ { -u _i , _i } ) | 
						
							| 210 |  | resmpt |  |-  ( S C_ ( CC \ { -u _i , _i } ) -> ( ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |` S ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) ) | 
						
							| 211 | 209 210 | ax-mp |  |-  ( ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |` S ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) | 
						
							| 212 | 206 211 | eqtri |  |-  ( arctan |` S ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) | 
						
							| 213 | 212 | a1i |  |-  ( T. -> ( arctan |` S ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) ) | 
						
							| 214 | 213 | oveq2d |  |-  ( T. -> ( CC _D ( arctan |` S ) ) = ( CC _D ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) ) ) | 
						
							| 215 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 216 |  | divcan6 |  |-  ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( _i / 2 ) x. ( 2 / _i ) ) = 1 ) | 
						
							| 217 | 6 84 154 215 216 | mp4an |  |-  ( ( _i / 2 ) x. ( 2 / _i ) ) = 1 | 
						
							| 218 | 217 | oveq1i |  |-  ( ( ( _i / 2 ) x. ( 2 / _i ) ) / ( 1 + ( x ^ 2 ) ) ) = ( 1 / ( 1 + ( x ^ 2 ) ) ) | 
						
							| 219 | 6 202 | mp1i |  |-  ( ( T. /\ x e. S ) -> ( _i / 2 ) e. CC ) | 
						
							| 220 | 154 6 84 | divcli |  |-  ( 2 / _i ) e. CC | 
						
							| 221 | 220 | a1i |  |-  ( ( T. /\ x e. S ) -> ( 2 / _i ) e. CC ) | 
						
							| 222 | 219 221 145 148 | divassd |  |-  ( ( T. /\ x e. S ) -> ( ( ( _i / 2 ) x. ( 2 / _i ) ) / ( 1 + ( x ^ 2 ) ) ) = ( ( _i / 2 ) x. ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) | 
						
							| 223 | 218 222 | eqtr3id |  |-  ( ( T. /\ x e. S ) -> ( 1 / ( 1 + ( x ^ 2 ) ) ) = ( ( _i / 2 ) x. ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) | 
						
							| 224 | 223 | mpteq2dva |  |-  ( T. -> ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) ) | 
						
							| 225 | 204 214 224 | 3eqtr4d |  |-  ( T. -> ( CC _D ( arctan |` S ) ) = ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) ) | 
						
							| 226 | 225 | mptru |  |-  ( CC _D ( arctan |` S ) ) = ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) |