| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcn.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
| 2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 3 |
2
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 4 |
3
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 5 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 6 |
5
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
| 7 |
1
|
logdmopn |
|- D e. ( TopOpen ` CCfld ) |
| 8 |
7
|
a1i |
|- ( T. -> D e. ( TopOpen ` CCfld ) ) |
| 9 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
| 10 |
|
f1of1 |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) -1-1-> ran log ) |
| 11 |
9 10
|
ax-mp |
|- log : ( CC \ { 0 } ) -1-1-> ran log |
| 12 |
1
|
logdmss |
|- D C_ ( CC \ { 0 } ) |
| 13 |
|
f1ores |
|- ( ( log : ( CC \ { 0 } ) -1-1-> ran log /\ D C_ ( CC \ { 0 } ) ) -> ( log |` D ) : D -1-1-onto-> ( log " D ) ) |
| 14 |
11 12 13
|
mp2an |
|- ( log |` D ) : D -1-1-onto-> ( log " D ) |
| 15 |
|
f1ocnv |
|- ( ( log |` D ) : D -1-1-onto-> ( log " D ) -> `' ( log |` D ) : ( log " D ) -1-1-onto-> D ) |
| 16 |
14 15
|
ax-mp |
|- `' ( log |` D ) : ( log " D ) -1-1-onto-> D |
| 17 |
|
df-log |
|- log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 18 |
17
|
reseq1i |
|- ( log |` D ) = ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` D ) |
| 19 |
18
|
cnveqi |
|- `' ( log |` D ) = `' ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` D ) |
| 20 |
|
eff |
|- exp : CC --> CC |
| 21 |
|
cnvimass |
|- ( `' Im " ( -u _pi (,] _pi ) ) C_ dom Im |
| 22 |
|
imf |
|- Im : CC --> RR |
| 23 |
22
|
fdmi |
|- dom Im = CC |
| 24 |
21 23
|
sseqtri |
|- ( `' Im " ( -u _pi (,] _pi ) ) C_ CC |
| 25 |
|
fssres |
|- ( ( exp : CC --> CC /\ ( `' Im " ( -u _pi (,] _pi ) ) C_ CC ) -> ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) --> CC ) |
| 26 |
20 24 25
|
mp2an |
|- ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) --> CC |
| 27 |
|
ffun |
|- ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) --> CC -> Fun ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) ) |
| 28 |
|
funcnvres2 |
|- ( Fun ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) -> `' ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` D ) = ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) ) |
| 29 |
26 27 28
|
mp2b |
|- `' ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` D ) = ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) |
| 30 |
|
cnvimass |
|- ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) C_ dom ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 31 |
26
|
fdmi |
|- dom ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( `' Im " ( -u _pi (,] _pi ) ) |
| 32 |
30 31
|
sseqtri |
|- ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) C_ ( `' Im " ( -u _pi (,] _pi ) ) |
| 33 |
|
resabs1 |
|- ( ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) C_ ( `' Im " ( -u _pi (,] _pi ) ) -> ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) = ( exp |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) ) |
| 34 |
32 33
|
ax-mp |
|- ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) = ( exp |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) |
| 35 |
19 29 34
|
3eqtri |
|- `' ( log |` D ) = ( exp |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) |
| 36 |
17
|
imaeq1i |
|- ( log " D ) = ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) |
| 37 |
36
|
reseq2i |
|- ( exp |` ( log " D ) ) = ( exp |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) |
| 38 |
35 37
|
eqtr4i |
|- `' ( log |` D ) = ( exp |` ( log " D ) ) |
| 39 |
|
f1oeq1 |
|- ( `' ( log |` D ) = ( exp |` ( log " D ) ) -> ( `' ( log |` D ) : ( log " D ) -1-1-onto-> D <-> ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D ) ) |
| 40 |
38 39
|
ax-mp |
|- ( `' ( log |` D ) : ( log " D ) -1-1-onto-> D <-> ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D ) |
| 41 |
16 40
|
mpbi |
|- ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D |
| 42 |
41
|
a1i |
|- ( T. -> ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D ) |
| 43 |
38
|
cnveqi |
|- `' `' ( log |` D ) = `' ( exp |` ( log " D ) ) |
| 44 |
|
relres |
|- Rel ( log |` D ) |
| 45 |
|
dfrel2 |
|- ( Rel ( log |` D ) <-> `' `' ( log |` D ) = ( log |` D ) ) |
| 46 |
44 45
|
mpbi |
|- `' `' ( log |` D ) = ( log |` D ) |
| 47 |
43 46
|
eqtr3i |
|- `' ( exp |` ( log " D ) ) = ( log |` D ) |
| 48 |
|
f1of |
|- ( ( log |` D ) : D -1-1-onto-> ( log " D ) -> ( log |` D ) : D --> ( log " D ) ) |
| 49 |
14 48
|
mp1i |
|- ( T. -> ( log |` D ) : D --> ( log " D ) ) |
| 50 |
|
imassrn |
|- ( log " D ) C_ ran log |
| 51 |
|
logrncn |
|- ( x e. ran log -> x e. CC ) |
| 52 |
51
|
ssriv |
|- ran log C_ CC |
| 53 |
50 52
|
sstri |
|- ( log " D ) C_ CC |
| 54 |
1
|
logcn |
|- ( log |` D ) e. ( D -cn-> CC ) |
| 55 |
|
cncfcdm |
|- ( ( ( log " D ) C_ CC /\ ( log |` D ) e. ( D -cn-> CC ) ) -> ( ( log |` D ) e. ( D -cn-> ( log " D ) ) <-> ( log |` D ) : D --> ( log " D ) ) ) |
| 56 |
53 54 55
|
mp2an |
|- ( ( log |` D ) e. ( D -cn-> ( log " D ) ) <-> ( log |` D ) : D --> ( log " D ) ) |
| 57 |
49 56
|
sylibr |
|- ( T. -> ( log |` D ) e. ( D -cn-> ( log " D ) ) ) |
| 58 |
47 57
|
eqeltrid |
|- ( T. -> `' ( exp |` ( log " D ) ) e. ( D -cn-> ( log " D ) ) ) |
| 59 |
|
ssid |
|- CC C_ CC |
| 60 |
2 4
|
dvres |
|- ( ( ( CC C_ CC /\ exp : CC --> CC ) /\ ( CC C_ CC /\ ( log " D ) C_ CC ) ) -> ( CC _D ( exp |` ( log " D ) ) ) = ( ( CC _D exp ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) ) ) |
| 61 |
59 20 59 53 60
|
mp4an |
|- ( CC _D ( exp |` ( log " D ) ) ) = ( ( CC _D exp ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) ) |
| 62 |
|
dvef |
|- ( CC _D exp ) = exp |
| 63 |
2
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 64 |
1
|
dvloglem |
|- ( log " D ) e. ( TopOpen ` CCfld ) |
| 65 |
|
isopn3i |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( log " D ) e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) = ( log " D ) ) |
| 66 |
63 64 65
|
mp2an |
|- ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) = ( log " D ) |
| 67 |
62 66
|
reseq12i |
|- ( ( CC _D exp ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) ) = ( exp |` ( log " D ) ) |
| 68 |
61 67
|
eqtri |
|- ( CC _D ( exp |` ( log " D ) ) ) = ( exp |` ( log " D ) ) |
| 69 |
68
|
dmeqi |
|- dom ( CC _D ( exp |` ( log " D ) ) ) = dom ( exp |` ( log " D ) ) |
| 70 |
|
dmres |
|- dom ( exp |` ( log " D ) ) = ( ( log " D ) i^i dom exp ) |
| 71 |
20
|
fdmi |
|- dom exp = CC |
| 72 |
53 71
|
sseqtrri |
|- ( log " D ) C_ dom exp |
| 73 |
|
dfss2 |
|- ( ( log " D ) C_ dom exp <-> ( ( log " D ) i^i dom exp ) = ( log " D ) ) |
| 74 |
72 73
|
mpbi |
|- ( ( log " D ) i^i dom exp ) = ( log " D ) |
| 75 |
69 70 74
|
3eqtri |
|- dom ( CC _D ( exp |` ( log " D ) ) ) = ( log " D ) |
| 76 |
75
|
a1i |
|- ( T. -> dom ( CC _D ( exp |` ( log " D ) ) ) = ( log " D ) ) |
| 77 |
|
neirr |
|- -. 0 =/= 0 |
| 78 |
|
resss |
|- ( ( CC _D exp ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) ) C_ ( CC _D exp ) |
| 79 |
61 78
|
eqsstri |
|- ( CC _D ( exp |` ( log " D ) ) ) C_ ( CC _D exp ) |
| 80 |
79 62
|
sseqtri |
|- ( CC _D ( exp |` ( log " D ) ) ) C_ exp |
| 81 |
80
|
rnssi |
|- ran ( CC _D ( exp |` ( log " D ) ) ) C_ ran exp |
| 82 |
|
eff2 |
|- exp : CC --> ( CC \ { 0 } ) |
| 83 |
|
frn |
|- ( exp : CC --> ( CC \ { 0 } ) -> ran exp C_ ( CC \ { 0 } ) ) |
| 84 |
82 83
|
ax-mp |
|- ran exp C_ ( CC \ { 0 } ) |
| 85 |
81 84
|
sstri |
|- ran ( CC _D ( exp |` ( log " D ) ) ) C_ ( CC \ { 0 } ) |
| 86 |
85
|
sseli |
|- ( 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) -> 0 e. ( CC \ { 0 } ) ) |
| 87 |
|
eldifsn |
|- ( 0 e. ( CC \ { 0 } ) <-> ( 0 e. CC /\ 0 =/= 0 ) ) |
| 88 |
86 87
|
sylib |
|- ( 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) -> ( 0 e. CC /\ 0 =/= 0 ) ) |
| 89 |
88
|
simprd |
|- ( 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) -> 0 =/= 0 ) |
| 90 |
77 89
|
mto |
|- -. 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) |
| 91 |
90
|
a1i |
|- ( T. -> -. 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) ) |
| 92 |
2 4 6 8 42 58 76 91
|
dvcnv |
|- ( T. -> ( CC _D `' ( exp |` ( log " D ) ) ) = ( x e. D |-> ( 1 / ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) ) ) ) |
| 93 |
92
|
mptru |
|- ( CC _D `' ( exp |` ( log " D ) ) ) = ( x e. D |-> ( 1 / ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) ) ) |
| 94 |
47
|
oveq2i |
|- ( CC _D `' ( exp |` ( log " D ) ) ) = ( CC _D ( log |` D ) ) |
| 95 |
68
|
fveq1i |
|- ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) = ( ( exp |` ( log " D ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) |
| 96 |
|
f1ocnvfv2 |
|- ( ( ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D /\ x e. D ) -> ( ( exp |` ( log " D ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) = x ) |
| 97 |
41 96
|
mpan |
|- ( x e. D -> ( ( exp |` ( log " D ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) = x ) |
| 98 |
95 97
|
eqtrid |
|- ( x e. D -> ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) = x ) |
| 99 |
98
|
oveq2d |
|- ( x e. D -> ( 1 / ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) ) = ( 1 / x ) ) |
| 100 |
99
|
mpteq2ia |
|- ( x e. D |-> ( 1 / ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) ) ) = ( x e. D |-> ( 1 / x ) ) |
| 101 |
93 94 100
|
3eqtr3i |
|- ( CC _D ( log |` D ) ) = ( x e. D |-> ( 1 / x ) ) |