| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcn.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
| 2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 3 |
2
|
recld2 |
|- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 4 |
|
0re |
|- 0 e. RR |
| 5 |
|
iocmnfcld |
|- ( 0 e. RR -> ( -oo (,] 0 ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 6 |
4 5
|
ax-mp |
|- ( -oo (,] 0 ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
| 7 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 8 |
7
|
fveq2i |
|- ( Clsd ` ( topGen ` ran (,) ) ) = ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 9 |
6 8
|
eleqtri |
|- ( -oo (,] 0 ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 10 |
|
restcldr |
|- ( ( RR e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ ( -oo (,] 0 ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) ) -> ( -oo (,] 0 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 11 |
3 9 10
|
mp2an |
|- ( -oo (,] 0 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 12 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 13 |
12
|
cldopn |
|- ( ( -oo (,] 0 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ ( -oo (,] 0 ) ) e. ( TopOpen ` CCfld ) ) |
| 14 |
11 13
|
ax-mp |
|- ( CC \ ( -oo (,] 0 ) ) e. ( TopOpen ` CCfld ) |
| 15 |
1 14
|
eqeltri |
|- D e. ( TopOpen ` CCfld ) |