| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 3 |
2
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 4 |
3
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 5 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 6 |
5
|
a1i |
⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
| 7 |
1
|
logdmopn |
⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |
| 8 |
7
|
a1i |
⊢ ( ⊤ → 𝐷 ∈ ( TopOpen ‘ ℂfld ) ) |
| 9 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
| 10 |
|
f1of1 |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) –1-1→ ran log ) |
| 11 |
9 10
|
ax-mp |
⊢ log : ( ℂ ∖ { 0 } ) –1-1→ ran log |
| 12 |
1
|
logdmss |
⊢ 𝐷 ⊆ ( ℂ ∖ { 0 } ) |
| 13 |
|
f1ores |
⊢ ( ( log : ( ℂ ∖ { 0 } ) –1-1→ ran log ∧ 𝐷 ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) ) |
| 14 |
11 12 13
|
mp2an |
⊢ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) |
| 15 |
|
f1ocnv |
⊢ ( ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) → ◡ ( log ↾ 𝐷 ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ) |
| 16 |
14 15
|
ax-mp |
⊢ ◡ ( log ↾ 𝐷 ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 |
| 17 |
|
df-log |
⊢ log = ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) |
| 18 |
17
|
reseq1i |
⊢ ( log ↾ 𝐷 ) = ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ 𝐷 ) |
| 19 |
18
|
cnveqi |
⊢ ◡ ( log ↾ 𝐷 ) = ◡ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ 𝐷 ) |
| 20 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 21 |
|
cnvimass |
⊢ ( ◡ ℑ “ ( - π (,] π ) ) ⊆ dom ℑ |
| 22 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
| 23 |
22
|
fdmi |
⊢ dom ℑ = ℂ |
| 24 |
21 23
|
sseqtri |
⊢ ( ◡ ℑ “ ( - π (,] π ) ) ⊆ ℂ |
| 25 |
|
fssres |
⊢ ( ( exp : ℂ ⟶ ℂ ∧ ( ◡ ℑ “ ( - π (,] π ) ) ⊆ ℂ ) → ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) ⟶ ℂ ) |
| 26 |
20 24 25
|
mp2an |
⊢ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) ⟶ ℂ |
| 27 |
|
ffun |
⊢ ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) ⟶ ℂ → Fun ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ) |
| 28 |
|
funcnvres2 |
⊢ ( Fun ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) → ◡ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ 𝐷 ) = ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) ) |
| 29 |
26 27 28
|
mp2b |
⊢ ◡ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ 𝐷 ) = ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) |
| 30 |
|
cnvimass |
⊢ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ⊆ dom ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) |
| 31 |
26
|
fdmi |
⊢ dom ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) = ( ◡ ℑ “ ( - π (,] π ) ) |
| 32 |
30 31
|
sseqtri |
⊢ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,] π ) ) |
| 33 |
|
resabs1 |
⊢ ( ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,] π ) ) → ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) = ( exp ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) ) |
| 34 |
32 33
|
ax-mp |
⊢ ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) = ( exp ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) |
| 35 |
19 29 34
|
3eqtri |
⊢ ◡ ( log ↾ 𝐷 ) = ( exp ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) |
| 36 |
17
|
imaeq1i |
⊢ ( log “ 𝐷 ) = ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) |
| 37 |
36
|
reseq2i |
⊢ ( exp ↾ ( log “ 𝐷 ) ) = ( exp ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) |
| 38 |
35 37
|
eqtr4i |
⊢ ◡ ( log ↾ 𝐷 ) = ( exp ↾ ( log “ 𝐷 ) ) |
| 39 |
|
f1oeq1 |
⊢ ( ◡ ( log ↾ 𝐷 ) = ( exp ↾ ( log “ 𝐷 ) ) → ( ◡ ( log ↾ 𝐷 ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ↔ ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ) ) |
| 40 |
38 39
|
ax-mp |
⊢ ( ◡ ( log ↾ 𝐷 ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ↔ ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ) |
| 41 |
16 40
|
mpbi |
⊢ ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 |
| 42 |
41
|
a1i |
⊢ ( ⊤ → ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ) |
| 43 |
38
|
cnveqi |
⊢ ◡ ◡ ( log ↾ 𝐷 ) = ◡ ( exp ↾ ( log “ 𝐷 ) ) |
| 44 |
|
relres |
⊢ Rel ( log ↾ 𝐷 ) |
| 45 |
|
dfrel2 |
⊢ ( Rel ( log ↾ 𝐷 ) ↔ ◡ ◡ ( log ↾ 𝐷 ) = ( log ↾ 𝐷 ) ) |
| 46 |
44 45
|
mpbi |
⊢ ◡ ◡ ( log ↾ 𝐷 ) = ( log ↾ 𝐷 ) |
| 47 |
43 46
|
eqtr3i |
⊢ ◡ ( exp ↾ ( log “ 𝐷 ) ) = ( log ↾ 𝐷 ) |
| 48 |
|
f1of |
⊢ ( ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) → ( log ↾ 𝐷 ) : 𝐷 ⟶ ( log “ 𝐷 ) ) |
| 49 |
14 48
|
mp1i |
⊢ ( ⊤ → ( log ↾ 𝐷 ) : 𝐷 ⟶ ( log “ 𝐷 ) ) |
| 50 |
|
imassrn |
⊢ ( log “ 𝐷 ) ⊆ ran log |
| 51 |
|
logrncn |
⊢ ( 𝑥 ∈ ran log → 𝑥 ∈ ℂ ) |
| 52 |
51
|
ssriv |
⊢ ran log ⊆ ℂ |
| 53 |
50 52
|
sstri |
⊢ ( log “ 𝐷 ) ⊆ ℂ |
| 54 |
1
|
logcn |
⊢ ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) |
| 55 |
|
cncfcdm |
⊢ ( ( ( log “ 𝐷 ) ⊆ ℂ ∧ ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) ) → ( ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ( log “ 𝐷 ) ) ↔ ( log ↾ 𝐷 ) : 𝐷 ⟶ ( log “ 𝐷 ) ) ) |
| 56 |
53 54 55
|
mp2an |
⊢ ( ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ( log “ 𝐷 ) ) ↔ ( log ↾ 𝐷 ) : 𝐷 ⟶ ( log “ 𝐷 ) ) |
| 57 |
49 56
|
sylibr |
⊢ ( ⊤ → ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ( log “ 𝐷 ) ) ) |
| 58 |
47 57
|
eqeltrid |
⊢ ( ⊤ → ◡ ( exp ↾ ( log “ 𝐷 ) ) ∈ ( 𝐷 –cn→ ( log “ 𝐷 ) ) ) |
| 59 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 60 |
2 4
|
dvres |
⊢ ( ( ( ℂ ⊆ ℂ ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ( log “ 𝐷 ) ⊆ ℂ ) ) → ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( ( ℂ D exp ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) ) ) |
| 61 |
59 20 59 53 60
|
mp4an |
⊢ ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( ( ℂ D exp ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) ) |
| 62 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
| 63 |
2
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 64 |
1
|
dvloglem |
⊢ ( log “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) |
| 65 |
|
isopn3i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( log “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) = ( log “ 𝐷 ) ) |
| 66 |
63 64 65
|
mp2an |
⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) = ( log “ 𝐷 ) |
| 67 |
62 66
|
reseq12i |
⊢ ( ( ℂ D exp ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) ) = ( exp ↾ ( log “ 𝐷 ) ) |
| 68 |
61 67
|
eqtri |
⊢ ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( exp ↾ ( log “ 𝐷 ) ) |
| 69 |
68
|
dmeqi |
⊢ dom ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = dom ( exp ↾ ( log “ 𝐷 ) ) |
| 70 |
|
dmres |
⊢ dom ( exp ↾ ( log “ 𝐷 ) ) = ( ( log “ 𝐷 ) ∩ dom exp ) |
| 71 |
20
|
fdmi |
⊢ dom exp = ℂ |
| 72 |
53 71
|
sseqtrri |
⊢ ( log “ 𝐷 ) ⊆ dom exp |
| 73 |
|
dfss2 |
⊢ ( ( log “ 𝐷 ) ⊆ dom exp ↔ ( ( log “ 𝐷 ) ∩ dom exp ) = ( log “ 𝐷 ) ) |
| 74 |
72 73
|
mpbi |
⊢ ( ( log “ 𝐷 ) ∩ dom exp ) = ( log “ 𝐷 ) |
| 75 |
69 70 74
|
3eqtri |
⊢ dom ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( log “ 𝐷 ) |
| 76 |
75
|
a1i |
⊢ ( ⊤ → dom ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( log “ 𝐷 ) ) |
| 77 |
|
neirr |
⊢ ¬ 0 ≠ 0 |
| 78 |
|
resss |
⊢ ( ( ℂ D exp ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) ) ⊆ ( ℂ D exp ) |
| 79 |
61 78
|
eqsstri |
⊢ ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ⊆ ( ℂ D exp ) |
| 80 |
79 62
|
sseqtri |
⊢ ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ⊆ exp |
| 81 |
80
|
rnssi |
⊢ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ⊆ ran exp |
| 82 |
|
eff2 |
⊢ exp : ℂ ⟶ ( ℂ ∖ { 0 } ) |
| 83 |
|
frn |
⊢ ( exp : ℂ ⟶ ( ℂ ∖ { 0 } ) → ran exp ⊆ ( ℂ ∖ { 0 } ) ) |
| 84 |
82 83
|
ax-mp |
⊢ ran exp ⊆ ( ℂ ∖ { 0 } ) |
| 85 |
81 84
|
sstri |
⊢ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ⊆ ( ℂ ∖ { 0 } ) |
| 86 |
85
|
sseli |
⊢ ( 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) → 0 ∈ ( ℂ ∖ { 0 } ) ) |
| 87 |
|
eldifsn |
⊢ ( 0 ∈ ( ℂ ∖ { 0 } ) ↔ ( 0 ∈ ℂ ∧ 0 ≠ 0 ) ) |
| 88 |
86 87
|
sylib |
⊢ ( 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) → ( 0 ∈ ℂ ∧ 0 ≠ 0 ) ) |
| 89 |
88
|
simprd |
⊢ ( 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) → 0 ≠ 0 ) |
| 90 |
77 89
|
mto |
⊢ ¬ 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) |
| 91 |
90
|
a1i |
⊢ ( ⊤ → ¬ 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ) |
| 92 |
2 4 6 8 42 58 76 91
|
dvcnv |
⊢ ( ⊤ → ( ℂ D ◡ ( exp ↾ ( log “ 𝐷 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) ) ) ) |
| 93 |
92
|
mptru |
⊢ ( ℂ D ◡ ( exp ↾ ( log “ 𝐷 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) ) ) |
| 94 |
47
|
oveq2i |
⊢ ( ℂ D ◡ ( exp ↾ ( log “ 𝐷 ) ) ) = ( ℂ D ( log ↾ 𝐷 ) ) |
| 95 |
68
|
fveq1i |
⊢ ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) = ( ( exp ↾ ( log “ 𝐷 ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) |
| 96 |
|
f1ocnvfv2 |
⊢ ( ( ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( ( exp ↾ ( log “ 𝐷 ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) = 𝑥 ) |
| 97 |
41 96
|
mpan |
⊢ ( 𝑥 ∈ 𝐷 → ( ( exp ↾ ( log “ 𝐷 ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) = 𝑥 ) |
| 98 |
95 97
|
eqtrid |
⊢ ( 𝑥 ∈ 𝐷 → ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) = 𝑥 ) |
| 99 |
98
|
oveq2d |
⊢ ( 𝑥 ∈ 𝐷 → ( 1 / ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) ) = ( 1 / 𝑥 ) ) |
| 100 |
99
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( 1 / ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / 𝑥 ) ) |
| 101 |
93 94 100
|
3eqtr3i |
⊢ ( ℂ D ( log ↾ 𝐷 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / 𝑥 ) ) |