| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 2 |
|
ffn |
⊢ ( exp : ℂ ⟶ ℂ → exp Fn ℂ ) |
| 3 |
1 2
|
ax-mp |
⊢ exp Fn ℂ |
| 4 |
|
efcl |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 5 |
|
efne0 |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ≠ 0 ) |
| 6 |
|
eldifsn |
⊢ ( ( exp ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( exp ‘ 𝑥 ) ∈ ℂ ∧ ( exp ‘ 𝑥 ) ≠ 0 ) ) |
| 7 |
4 5 6
|
sylanbrc |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 8 |
7
|
rgen |
⊢ ∀ 𝑥 ∈ ℂ ( exp ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) |
| 9 |
|
ffnfv |
⊢ ( exp : ℂ ⟶ ( ℂ ∖ { 0 } ) ↔ ( exp Fn ℂ ∧ ∀ 𝑥 ∈ ℂ ( exp ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
| 10 |
3 8 9
|
mpbir2an |
⊢ exp : ℂ ⟶ ( ℂ ∖ { 0 } ) |