Metamath Proof Explorer


Theorem eff2

Description: The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008)

Ref Expression
Assertion eff2
|- exp : CC --> ( CC \ { 0 } )

Proof

Step Hyp Ref Expression
1 eff
 |-  exp : CC --> CC
2 ffn
 |-  ( exp : CC --> CC -> exp Fn CC )
3 1 2 ax-mp
 |-  exp Fn CC
4 efcl
 |-  ( x e. CC -> ( exp ` x ) e. CC )
5 efne0
 |-  ( x e. CC -> ( exp ` x ) =/= 0 )
6 eldifsn
 |-  ( ( exp ` x ) e. ( CC \ { 0 } ) <-> ( ( exp ` x ) e. CC /\ ( exp ` x ) =/= 0 ) )
7 4 5 6 sylanbrc
 |-  ( x e. CC -> ( exp ` x ) e. ( CC \ { 0 } ) )
8 7 rgen
 |-  A. x e. CC ( exp ` x ) e. ( CC \ { 0 } )
9 ffnfv
 |-  ( exp : CC --> ( CC \ { 0 } ) <-> ( exp Fn CC /\ A. x e. CC ( exp ` x ) e. ( CC \ { 0 } ) ) )
10 3 8 9 mpbir2an
 |-  exp : CC --> ( CC \ { 0 } )