| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eff |
|- exp : CC --> CC |
| 2 |
|
ffn |
|- ( exp : CC --> CC -> exp Fn CC ) |
| 3 |
1 2
|
ax-mp |
|- exp Fn CC |
| 4 |
|
efcl |
|- ( x e. CC -> ( exp ` x ) e. CC ) |
| 5 |
|
efne0 |
|- ( x e. CC -> ( exp ` x ) =/= 0 ) |
| 6 |
|
eldifsn |
|- ( ( exp ` x ) e. ( CC \ { 0 } ) <-> ( ( exp ` x ) e. CC /\ ( exp ` x ) =/= 0 ) ) |
| 7 |
4 5 6
|
sylanbrc |
|- ( x e. CC -> ( exp ` x ) e. ( CC \ { 0 } ) ) |
| 8 |
7
|
rgen |
|- A. x e. CC ( exp ` x ) e. ( CC \ { 0 } ) |
| 9 |
|
ffnfv |
|- ( exp : CC --> ( CC \ { 0 } ) <-> ( exp Fn CC /\ A. x e. CC ( exp ` x ) e. ( CC \ { 0 } ) ) ) |
| 10 |
3 8 9
|
mpbir2an |
|- exp : CC --> ( CC \ { 0 } ) |