Metamath Proof Explorer


Theorem dvlog

Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Hypothesis logcn.d D = −∞ 0
Assertion dvlog D log D = x D 1 x

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 eqid TopOpen fld = TopOpen fld
3 2 cnfldtopon TopOpen fld TopOn
4 3 toponrestid TopOpen fld = TopOpen fld 𝑡
5 cnelprrecn
6 5 a1i
7 1 logdmopn D TopOpen fld
8 7 a1i D TopOpen fld
9 logf1o log : 0 1-1 onto ran log
10 f1of1 log : 0 1-1 onto ran log log : 0 1-1 ran log
11 9 10 ax-mp log : 0 1-1 ran log
12 1 logdmss D 0
13 f1ores log : 0 1-1 ran log D 0 log D : D 1-1 onto log D
14 11 12 13 mp2an log D : D 1-1 onto log D
15 f1ocnv log D : D 1-1 onto log D log D -1 : log D 1-1 onto D
16 14 15 ax-mp log D -1 : log D 1-1 onto D
17 df-log log = exp -1 π π -1
18 17 reseq1i log D = exp -1 π π -1 D
19 18 cnveqi log D -1 = exp -1 π π -1 D -1
20 eff exp :
21 cnvimass -1 π π dom
22 imf :
23 22 fdmi dom =
24 21 23 sseqtri -1 π π
25 fssres exp : -1 π π exp -1 π π : -1 π π
26 20 24 25 mp2an exp -1 π π : -1 π π
27 ffun exp -1 π π : -1 π π Fun exp -1 π π
28 funcnvres2 Fun exp -1 π π exp -1 π π -1 D -1 = exp -1 π π exp -1 π π -1 D
29 26 27 28 mp2b exp -1 π π -1 D -1 = exp -1 π π exp -1 π π -1 D
30 cnvimass exp -1 π π -1 D dom exp -1 π π
31 26 fdmi dom exp -1 π π = -1 π π
32 30 31 sseqtri exp -1 π π -1 D -1 π π
33 resabs1 exp -1 π π -1 D -1 π π exp -1 π π exp -1 π π -1 D = exp exp -1 π π -1 D
34 32 33 ax-mp exp -1 π π exp -1 π π -1 D = exp exp -1 π π -1 D
35 19 29 34 3eqtri log D -1 = exp exp -1 π π -1 D
36 17 imaeq1i log D = exp -1 π π -1 D
37 36 reseq2i exp log D = exp exp -1 π π -1 D
38 35 37 eqtr4i log D -1 = exp log D
39 f1oeq1 log D -1 = exp log D log D -1 : log D 1-1 onto D exp log D : log D 1-1 onto D
40 38 39 ax-mp log D -1 : log D 1-1 onto D exp log D : log D 1-1 onto D
41 16 40 mpbi exp log D : log D 1-1 onto D
42 41 a1i exp log D : log D 1-1 onto D
43 38 cnveqi log D -1 -1 = exp log D -1
44 relres Rel log D
45 dfrel2 Rel log D log D -1 -1 = log D
46 44 45 mpbi log D -1 -1 = log D
47 43 46 eqtr3i exp log D -1 = log D
48 f1of log D : D 1-1 onto log D log D : D log D
49 14 48 mp1i log D : D log D
50 imassrn log D ran log
51 logrncn x ran log x
52 51 ssriv ran log
53 50 52 sstri log D
54 1 logcn log D : D cn
55 cncffvrn log D log D : D cn log D : D cn log D log D : D log D
56 53 54 55 mp2an log D : D cn log D log D : D log D
57 49 56 sylibr log D : D cn log D
58 47 57 eqeltrid exp log D -1 : D cn log D
59 ssid
60 2 4 dvres exp : log D D exp log D = exp int TopOpen fld log D
61 59 20 59 53 60 mp4an D exp log D = exp int TopOpen fld log D
62 dvef D exp = exp
63 2 cnfldtop TopOpen fld Top
64 1 dvloglem log D TopOpen fld
65 isopn3i TopOpen fld Top log D TopOpen fld int TopOpen fld log D = log D
66 63 64 65 mp2an int TopOpen fld log D = log D
67 62 66 reseq12i exp int TopOpen fld log D = exp log D
68 61 67 eqtri D exp log D = exp log D
69 68 dmeqi dom exp log D = dom exp log D
70 dmres dom exp log D = log D dom exp
71 20 fdmi dom exp =
72 53 71 sseqtrri log D dom exp
73 df-ss log D dom exp log D dom exp = log D
74 72 73 mpbi log D dom exp = log D
75 69 70 74 3eqtri dom exp log D = log D
76 75 a1i dom exp log D = log D
77 neirr ¬ 0 0
78 resss exp int TopOpen fld log D D exp
79 61 78 eqsstri D exp log D D exp
80 79 62 sseqtri D exp log D exp
81 80 rnssi ran exp log D ran exp
82 eff2 exp : 0
83 frn exp : 0 ran exp 0
84 82 83 ax-mp ran exp 0
85 81 84 sstri ran exp log D 0
86 85 sseli 0 ran exp log D 0 0
87 eldifsn 0 0 0 0 0
88 86 87 sylib 0 ran exp log D 0 0 0
89 88 simprd 0 ran exp log D 0 0
90 77 89 mto ¬ 0 ran exp log D
91 90 a1i ¬ 0 ran exp log D
92 2 4 6 8 42 58 76 91 dvcnv D exp log D -1 = x D 1 exp log D exp log D -1 x
93 92 mptru D exp log D -1 = x D 1 exp log D exp log D -1 x
94 47 oveq2i D exp log D -1 = D log D
95 68 fveq1i exp log D exp log D -1 x = exp log D exp log D -1 x
96 f1ocnvfv2 exp log D : log D 1-1 onto D x D exp log D exp log D -1 x = x
97 41 96 mpan x D exp log D exp log D -1 x = x
98 95 97 eqtrid x D exp log D exp log D -1 x = x
99 98 oveq2d x D 1 exp log D exp log D -1 x = 1 x
100 99 mpteq2ia x D 1 exp log D exp log D -1 x = x D 1 x
101 93 94 100 3eqtr3i D log D = x D 1 x