| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atansopn.d |  |-  D = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 2 |  | atansopn.s |  |-  S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } | 
						
							| 3 |  | ssid |  |-  CC C_ CC | 
						
							| 4 |  | atanf |  |-  arctan : ( CC \ { -u _i , _i } ) --> CC | 
						
							| 5 | 1 2 | atansssdm |  |-  S C_ dom arctan | 
						
							| 6 | 4 | fdmi |  |-  dom arctan = ( CC \ { -u _i , _i } ) | 
						
							| 7 | 5 6 | sseqtri |  |-  S C_ ( CC \ { -u _i , _i } ) | 
						
							| 8 |  | fssres |  |-  ( ( arctan : ( CC \ { -u _i , _i } ) --> CC /\ S C_ ( CC \ { -u _i , _i } ) ) -> ( arctan |` S ) : S --> CC ) | 
						
							| 9 | 4 7 8 | mp2an |  |-  ( arctan |` S ) : S --> CC | 
						
							| 10 | 2 | ssrab3 |  |-  S C_ CC | 
						
							| 11 |  | ovex |  |-  ( 1 / ( 1 + ( x ^ 2 ) ) ) e. _V | 
						
							| 12 | 1 2 | dvatan |  |-  ( CC _D ( arctan |` S ) ) = ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) | 
						
							| 13 | 11 12 | dmmpti |  |-  dom ( CC _D ( arctan |` S ) ) = S | 
						
							| 14 |  | dvcn |  |-  ( ( ( CC C_ CC /\ ( arctan |` S ) : S --> CC /\ S C_ CC ) /\ dom ( CC _D ( arctan |` S ) ) = S ) -> ( arctan |` S ) e. ( S -cn-> CC ) ) | 
						
							| 15 | 13 14 | mpan2 |  |-  ( ( CC C_ CC /\ ( arctan |` S ) : S --> CC /\ S C_ CC ) -> ( arctan |` S ) e. ( S -cn-> CC ) ) | 
						
							| 16 | 3 9 10 15 | mp3an |  |-  ( arctan |` S ) e. ( S -cn-> CC ) |