Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atancn
Next ⟩
atantayl
Metamath Proof Explorer
Ascii
Unicode
Theorem
atancn
Description:
The arctangent is a continuous function.
(Contributed by
Mario Carneiro
, 7-Apr-2015)
Ref
Expression
Hypotheses
atansopn.d
⊢
D
=
ℂ
∖
−∞
0
atansopn.s
⊢
S
=
y
∈
ℂ
|
1
+
y
2
∈
D
Assertion
atancn
⊢
arctan
↾
S
:
S
⟶
cn
ℂ
Proof
Step
Hyp
Ref
Expression
1
atansopn.d
⊢
D
=
ℂ
∖
−∞
0
2
atansopn.s
⊢
S
=
y
∈
ℂ
|
1
+
y
2
∈
D
3
ssid
⊢
ℂ
⊆
ℂ
4
atanf
⊢
arctan
:
ℂ
∖
−
i
i
⟶
ℂ
5
1
2
atansssdm
⊢
S
⊆
dom
⁡
arctan
6
4
fdmi
⊢
dom
⁡
arctan
=
ℂ
∖
−
i
i
7
5
6
sseqtri
⊢
S
⊆
ℂ
∖
−
i
i
8
fssres
⊢
arctan
:
ℂ
∖
−
i
i
⟶
ℂ
∧
S
⊆
ℂ
∖
−
i
i
→
arctan
↾
S
:
S
⟶
ℂ
9
4
7
8
mp2an
⊢
arctan
↾
S
:
S
⟶
ℂ
10
2
ssrab3
⊢
S
⊆
ℂ
11
ovex
⊢
1
1
+
x
2
∈
V
12
1
2
dvatan
⊢
ℂ
D
arctan
↾
S
=
x
∈
S
⟼
1
1
+
x
2
13
11
12
dmmpti
⊢
dom
⁡
arctan
↾
S
ℂ
′
=
S
14
dvcn
⊢
ℂ
⊆
ℂ
∧
arctan
↾
S
:
S
⟶
ℂ
∧
S
⊆
ℂ
∧
dom
⁡
arctan
↾
S
ℂ
′
=
S
→
arctan
↾
S
:
S
⟶
cn
ℂ
15
13
14
mpan2
⊢
ℂ
⊆
ℂ
∧
arctan
↾
S
:
S
⟶
ℂ
∧
S
⊆
ℂ
→
arctan
↾
S
:
S
⟶
cn
ℂ
16
3
9
10
15
mp3an
⊢
arctan
↾
S
:
S
⟶
cn
ℂ