Metamath Proof Explorer


Theorem atancn

Description: The arctangent is a continuous function. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses atansopn.d D = −∞ 0
atansopn.s S = y | 1 + y 2 D
Assertion atancn arctan S : S cn

Proof

Step Hyp Ref Expression
1 atansopn.d D = −∞ 0
2 atansopn.s S = y | 1 + y 2 D
3 ssid
4 atanf arctan : i i
5 1 2 atansssdm S dom arctan
6 4 fdmi dom arctan = i i
7 5 6 sseqtri S i i
8 fssres arctan : i i S i i arctan S : S
9 4 7 8 mp2an arctan S : S
10 2 ssrab3 S
11 ovex 1 1 + x 2 V
12 1 2 dvatan D arctan S = x S 1 1 + x 2
13 11 12 dmmpti dom arctan S = S
14 dvcn arctan S : S S dom arctan S = S arctan S : S cn
15 13 14 mpan2 arctan S : S S arctan S : S cn
16 3 9 10 15 mp3an arctan S : S cn