| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atantayl.1 |
|
| 2 |
|
nnuz |
|
| 3 |
|
1zzd |
|
| 4 |
|
ax-icn |
|
| 5 |
|
halfcl |
|
| 6 |
4 5
|
mp1i |
|
| 7 |
|
simpl |
|
| 8 |
|
mulcl |
|
| 9 |
4 7 8
|
sylancr |
|
| 10 |
9
|
negcld |
|
| 11 |
9
|
absnegd |
|
| 12 |
|
absmul |
|
| 13 |
4 7 12
|
sylancr |
|
| 14 |
|
absi |
|
| 15 |
14
|
oveq1i |
|
| 16 |
|
abscl |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
recnd |
|
| 19 |
18
|
mullidd |
|
| 20 |
15 19
|
eqtrid |
|
| 21 |
11 13 20
|
3eqtrd |
|
| 22 |
|
simpr |
|
| 23 |
21 22
|
eqbrtrd |
|
| 24 |
|
logtayl |
|
| 25 |
10 23 24
|
syl2anc |
|
| 26 |
|
ax-1cn |
|
| 27 |
|
subneg |
|
| 28 |
26 9 27
|
sylancr |
|
| 29 |
28
|
fveq2d |
|
| 30 |
29
|
negeqd |
|
| 31 |
25 30
|
breqtrd |
|
| 32 |
|
seqex |
|
| 33 |
32
|
a1i |
|
| 34 |
11 23
|
eqbrtrrd |
|
| 35 |
|
logtayl |
|
| 36 |
9 34 35
|
syl2anc |
|
| 37 |
|
oveq2 |
|
| 38 |
|
id |
|
| 39 |
37 38
|
oveq12d |
|
| 40 |
|
eqid |
|
| 41 |
|
ovex |
|
| 42 |
39 40 41
|
fvmpt |
|
| 43 |
42
|
adantl |
|
| 44 |
|
nnnn0 |
|
| 45 |
|
expcl |
|
| 46 |
10 44 45
|
syl2an |
|
| 47 |
|
nncn |
|
| 48 |
47
|
adantl |
|
| 49 |
|
nnne0 |
|
| 50 |
49
|
adantl |
|
| 51 |
46 48 50
|
divcld |
|
| 52 |
43 51
|
eqeltrd |
|
| 53 |
2 3 52
|
serf |
|
| 54 |
53
|
ffvelcdmda |
|
| 55 |
|
oveq2 |
|
| 56 |
55 38
|
oveq12d |
|
| 57 |
|
eqid |
|
| 58 |
|
ovex |
|
| 59 |
56 57 58
|
fvmpt |
|
| 60 |
59
|
adantl |
|
| 61 |
|
expcl |
|
| 62 |
9 44 61
|
syl2an |
|
| 63 |
62 48 50
|
divcld |
|
| 64 |
60 63
|
eqeltrd |
|
| 65 |
2 3 64
|
serf |
|
| 66 |
65
|
ffvelcdmda |
|
| 67 |
|
simpr |
|
| 68 |
67 2
|
eleqtrdi |
|
| 69 |
|
simpl |
|
| 70 |
|
elfznn |
|
| 71 |
69 70 52
|
syl2an |
|
| 72 |
69 70 64
|
syl2an |
|
| 73 |
39 56
|
oveq12d |
|
| 74 |
|
eqid |
|
| 75 |
|
ovex |
|
| 76 |
73 74 75
|
fvmpt |
|
| 77 |
76
|
adantl |
|
| 78 |
43 60
|
oveq12d |
|
| 79 |
77 78
|
eqtr4d |
|
| 80 |
69 70 79
|
syl2an |
|
| 81 |
68 71 72 80
|
sersub |
|
| 82 |
2 3 31 33 36 54 66 81
|
climsub |
|
| 83 |
|
addcl |
|
| 84 |
26 9 83
|
sylancr |
|
| 85 |
|
bndatandm |
|
| 86 |
|
atandm2 |
|
| 87 |
85 86
|
sylib |
|
| 88 |
87
|
simp3d |
|
| 89 |
84 88
|
logcld |
|
| 90 |
|
subcl |
|
| 91 |
26 9 90
|
sylancr |
|
| 92 |
87
|
simp2d |
|
| 93 |
91 92
|
logcld |
|
| 94 |
89 93
|
neg2subd |
|
| 95 |
82 94
|
breqtrd |
|
| 96 |
51 63
|
subcld |
|
| 97 |
77 96
|
eqeltrd |
|
| 98 |
4
|
a1i |
|
| 99 |
|
negicn |
|
| 100 |
44
|
adantl |
|
| 101 |
|
expcl |
|
| 102 |
99 100 101
|
sylancr |
|
| 103 |
|
expcl |
|
| 104 |
4 100 103
|
sylancr |
|
| 105 |
102 104
|
subcld |
|
| 106 |
|
2cnd |
|
| 107 |
|
2ne0 |
|
| 108 |
107
|
a1i |
|
| 109 |
98 105 106 108
|
div23d |
|
| 110 |
109
|
oveq1d |
|
| 111 |
6
|
adantr |
|
| 112 |
|
expcl |
|
| 113 |
7 44 112
|
syl2an |
|
| 114 |
113 48 50
|
divcld |
|
| 115 |
111 105 114
|
mulassd |
|
| 116 |
102 104 113
|
subdird |
|
| 117 |
7
|
adantr |
|
| 118 |
|
mulneg1 |
|
| 119 |
4 117 118
|
sylancr |
|
| 120 |
119
|
oveq1d |
|
| 121 |
99
|
a1i |
|
| 122 |
121 117 100
|
mulexpd |
|
| 123 |
120 122
|
eqtr3d |
|
| 124 |
98 117 100
|
mulexpd |
|
| 125 |
123 124
|
oveq12d |
|
| 126 |
116 125
|
eqtr4d |
|
| 127 |
126
|
oveq1d |
|
| 128 |
105 113 48 50
|
divassd |
|
| 129 |
46 62 48 50
|
divsubdird |
|
| 130 |
127 128 129
|
3eqtr3d |
|
| 131 |
130
|
oveq2d |
|
| 132 |
110 115 131
|
3eqtrd |
|
| 133 |
|
oveq2 |
|
| 134 |
|
oveq2 |
|
| 135 |
133 134
|
oveq12d |
|
| 136 |
135
|
oveq2d |
|
| 137 |
136
|
oveq1d |
|
| 138 |
|
oveq2 |
|
| 139 |
138 38
|
oveq12d |
|
| 140 |
137 139
|
oveq12d |
|
| 141 |
|
ovex |
|
| 142 |
140 1 141
|
fvmpt |
|
| 143 |
142
|
adantl |
|
| 144 |
77
|
oveq2d |
|
| 145 |
132 143 144
|
3eqtr4d |
|
| 146 |
2 3 6 95 97 145
|
isermulc2 |
|
| 147 |
|
atanval |
|
| 148 |
85 147
|
syl |
|
| 149 |
146 148
|
breqtrrd |
|