Metamath Proof Explorer


Theorem atantayl

Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Hypothesis atantayl.1 F=niinin2Ann
Assertion atantayl AA<1seq1+FarctanA

Proof

Step Hyp Ref Expression
1 atantayl.1 F=niinin2Ann
2 nnuz =1
3 1zzd AA<11
4 ax-icn i
5 halfcl ii2
6 4 5 mp1i AA<1i2
7 simpl AA<1A
8 mulcl iAiA
9 4 7 8 sylancr AA<1iA
10 9 negcld AA<1iA
11 9 absnegd AA<1iA=iA
12 absmul iAiA=iA
13 4 7 12 sylancr AA<1iA=iA
14 absi i=1
15 14 oveq1i iA=1A
16 abscl AA
17 16 adantr AA<1A
18 17 recnd AA<1A
19 18 mullidd AA<11A=A
20 15 19 eqtrid AA<1iA=A
21 11 13 20 3eqtrd AA<1iA=A
22 simpr AA<1A<1
23 21 22 eqbrtrd AA<1iA<1
24 logtayl iAiA<1seq1+niAnnlog1iA
25 10 23 24 syl2anc AA<1seq1+niAnnlog1iA
26 ax-1cn 1
27 subneg 1iA1iA=1+iA
28 26 9 27 sylancr AA<11iA=1+iA
29 28 fveq2d AA<1log1iA=log1+iA
30 29 negeqd AA<1log1iA=log1+iA
31 25 30 breqtrd AA<1seq1+niAnnlog1+iA
32 seqex seq1+niAnniAnnV
33 32 a1i AA<1seq1+niAnniAnnV
34 11 23 eqbrtrrd AA<1iA<1
35 logtayl iAiA<1seq1+niAnnlog1iA
36 9 34 35 syl2anc AA<1seq1+niAnnlog1iA
37 oveq2 n=miAn=iAm
38 id n=mn=m
39 37 38 oveq12d n=miAnn=iAmm
40 eqid niAnn=niAnn
41 ovex iAmmV
42 39 40 41 fvmpt mniAnnm=iAmm
43 42 adantl AA<1mniAnnm=iAmm
44 nnnn0 mm0
45 expcl iAm0iAm
46 10 44 45 syl2an AA<1miAm
47 nncn mm
48 47 adantl AA<1mm
49 nnne0 mm0
50 49 adantl AA<1mm0
51 46 48 50 divcld AA<1miAmm
52 43 51 eqeltrd AA<1mniAnnm
53 2 3 52 serf AA<1seq1+niAnn:
54 53 ffvelcdmda AA<1kseq1+niAnnk
55 oveq2 n=miAn=iAm
56 55 38 oveq12d n=miAnn=iAmm
57 eqid niAnn=niAnn
58 ovex iAmmV
59 56 57 58 fvmpt mniAnnm=iAmm
60 59 adantl AA<1mniAnnm=iAmm
61 expcl iAm0iAm
62 9 44 61 syl2an AA<1miAm
63 62 48 50 divcld AA<1miAmm
64 60 63 eqeltrd AA<1mniAnnm
65 2 3 64 serf AA<1seq1+niAnn:
66 65 ffvelcdmda AA<1kseq1+niAnnk
67 simpr AA<1kk
68 67 2 eleqtrdi AA<1kk1
69 simpl AA<1kAA<1
70 elfznn m1km
71 69 70 52 syl2an AA<1km1kniAnnm
72 69 70 64 syl2an AA<1km1kniAnnm
73 39 56 oveq12d n=miAnniAnn=iAmmiAmm
74 eqid niAnniAnn=niAnniAnn
75 ovex iAmmiAmmV
76 73 74 75 fvmpt mniAnniAnnm=iAmmiAmm
77 76 adantl AA<1mniAnniAnnm=iAmmiAmm
78 43 60 oveq12d AA<1mniAnnmniAnnm=iAmmiAmm
79 77 78 eqtr4d AA<1mniAnniAnnm=niAnnmniAnnm
80 69 70 79 syl2an AA<1km1kniAnniAnnm=niAnnmniAnnm
81 68 71 72 80 sersub AA<1kseq1+niAnniAnnk=seq1+niAnnkseq1+niAnnk
82 2 3 31 33 36 54 66 81 climsub AA<1seq1+niAnniAnn-log1+iA-log1iA
83 addcl 1iA1+iA
84 26 9 83 sylancr AA<11+iA
85 bndatandm AA<1Adomarctan
86 atandm2 AdomarctanA1iA01+iA0
87 85 86 sylib AA<1A1iA01+iA0
88 87 simp3d AA<11+iA0
89 84 88 logcld AA<1log1+iA
90 subcl 1iA1iA
91 26 9 90 sylancr AA<11iA
92 87 simp2d AA<11iA0
93 91 92 logcld AA<1log1iA
94 89 93 neg2subd AA<1-log1+iA-log1iA=log1iAlog1+iA
95 82 94 breqtrd AA<1seq1+niAnniAnnlog1iAlog1+iA
96 51 63 subcld AA<1miAmmiAmm
97 77 96 eqeltrd AA<1mniAnniAnnm
98 4 a1i AA<1mi
99 negicn i
100 44 adantl AA<1mm0
101 expcl im0im
102 99 100 101 sylancr AA<1mim
103 expcl im0im
104 4 100 103 sylancr AA<1mim
105 102 104 subcld AA<1mimim
106 2cnd AA<1m2
107 2ne0 20
108 107 a1i AA<1m20
109 98 105 106 108 div23d AA<1miimim2=i2imim
110 109 oveq1d AA<1miimim2Amm=i2imimAmm
111 6 adantr AA<1mi2
112 expcl Am0Am
113 7 44 112 syl2an AA<1mAm
114 113 48 50 divcld AA<1mAmm
115 111 105 114 mulassd AA<1mi2imimAmm=i2imimAmm
116 102 104 113 subdird AA<1mimimAm=imAmimAm
117 7 adantr AA<1mA
118 mulneg1 iAiA=iA
119 4 117 118 sylancr AA<1miA=iA
120 119 oveq1d AA<1miAm=iAm
121 99 a1i AA<1mi
122 121 117 100 mulexpd AA<1miAm=imAm
123 120 122 eqtr3d AA<1miAm=imAm
124 98 117 100 mulexpd AA<1miAm=imAm
125 123 124 oveq12d AA<1miAmiAm=imAmimAm
126 116 125 eqtr4d AA<1mimimAm=iAmiAm
127 126 oveq1d AA<1mimimAmm=iAmiAmm
128 105 113 48 50 divassd AA<1mimimAmm=imimAmm
129 46 62 48 50 divsubdird AA<1miAmiAmm=iAmmiAmm
130 127 128 129 3eqtr3d AA<1mimimAmm=iAmmiAmm
131 130 oveq2d AA<1mi2imimAmm=i2iAmmiAmm
132 110 115 131 3eqtrd AA<1miimim2Amm=i2iAmmiAmm
133 oveq2 n=min=im
134 oveq2 n=min=im
135 133 134 oveq12d n=minin=imim
136 135 oveq2d n=miinin=iimim
137 136 oveq1d n=miinin2=iimim2
138 oveq2 n=mAn=Am
139 138 38 oveq12d n=mAnn=Amm
140 137 139 oveq12d n=miinin2Ann=iimim2Amm
141 ovex iimim2AmmV
142 140 1 141 fvmpt mFm=iimim2Amm
143 142 adantl AA<1mFm=iimim2Amm
144 77 oveq2d AA<1mi2niAnniAnnm=i2iAmmiAmm
145 132 143 144 3eqtr4d AA<1mFm=i2niAnniAnnm
146 2 3 6 95 97 145 isermulc2 AA<1seq1+Fi2log1iAlog1+iA
147 atanval AdomarctanarctanA=i2log1iAlog1+iA
148 85 147 syl AA<1arctanA=i2log1iAlog1+iA
149 146 148 breqtrrd AA<1seq1+FarctanA