Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atantayl
Next ⟩
atantayl2
Metamath Proof Explorer
Ascii
Unicode
Theorem
atantayl
Description:
The Taylor series for
arctan ( A )
.
(Contributed by
Mario Carneiro
, 1-Apr-2015)
Ref
Expression
Hypothesis
atantayl.1
⊢
F
=
n
∈
ℕ
⟼
i
−
i
n
−
i
n
2
A
n
n
Assertion
atantayl
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
F
⇝
arctan
A
Proof
Step
Hyp
Ref
Expression
1
atantayl.1
⊢
F
=
n
∈
ℕ
⟼
i
−
i
n
−
i
n
2
A
n
n
2
nnuz
⊢
ℕ
=
ℤ
≥
1
3
1zzd
⊢
A
∈
ℂ
∧
A
<
1
→
1
∈
ℤ
4
ax-icn
⊢
i
∈
ℂ
5
halfcl
⊢
i
∈
ℂ
→
i
2
∈
ℂ
6
4
5
mp1i
⊢
A
∈
ℂ
∧
A
<
1
→
i
2
∈
ℂ
7
simpl
⊢
A
∈
ℂ
∧
A
<
1
→
A
∈
ℂ
8
mulcl
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
∈
ℂ
9
4
7
8
sylancr
⊢
A
∈
ℂ
∧
A
<
1
→
i
A
∈
ℂ
10
9
negcld
⊢
A
∈
ℂ
∧
A
<
1
→
−
i
A
∈
ℂ
11
9
absnegd
⊢
A
∈
ℂ
∧
A
<
1
→
−
i
A
=
i
A
12
absmul
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
=
i
A
13
4
7
12
sylancr
⊢
A
∈
ℂ
∧
A
<
1
→
i
A
=
i
A
14
absi
⊢
i
=
1
15
14
oveq1i
⊢
i
A
=
1
A
16
abscl
⊢
A
∈
ℂ
→
A
∈
ℝ
17
16
adantr
⊢
A
∈
ℂ
∧
A
<
1
→
A
∈
ℝ
18
17
recnd
⊢
A
∈
ℂ
∧
A
<
1
→
A
∈
ℂ
19
18
mullidd
⊢
A
∈
ℂ
∧
A
<
1
→
1
A
=
A
20
15
19
eqtrid
⊢
A
∈
ℂ
∧
A
<
1
→
i
A
=
A
21
11
13
20
3eqtrd
⊢
A
∈
ℂ
∧
A
<
1
→
−
i
A
=
A
22
simpr
⊢
A
∈
ℂ
∧
A
<
1
→
A
<
1
23
21
22
eqbrtrd
⊢
A
∈
ℂ
∧
A
<
1
→
−
i
A
<
1
24
logtayl
⊢
−
i
A
∈
ℂ
∧
−
i
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
⇝
−
log
1
−
−
i
A
25
10
23
24
syl2anc
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
⇝
−
log
1
−
−
i
A
26
ax-1cn
⊢
1
∈
ℂ
27
subneg
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
−
−
i
A
=
1
+
i
A
28
26
9
27
sylancr
⊢
A
∈
ℂ
∧
A
<
1
→
1
−
−
i
A
=
1
+
i
A
29
28
fveq2d
⊢
A
∈
ℂ
∧
A
<
1
→
log
1
−
−
i
A
=
log
1
+
i
A
30
29
negeqd
⊢
A
∈
ℂ
∧
A
<
1
→
−
log
1
−
−
i
A
=
−
log
1
+
i
A
31
25
30
breqtrd
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
⇝
−
log
1
+
i
A
32
seqex
⊢
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
∈
V
33
32
a1i
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
∈
V
34
11
23
eqbrtrrd
⊢
A
∈
ℂ
∧
A
<
1
→
i
A
<
1
35
logtayl
⊢
i
A
∈
ℂ
∧
i
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
i
A
n
n
⇝
−
log
1
−
i
A
36
9
34
35
syl2anc
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
i
A
n
n
⇝
−
log
1
−
i
A
37
oveq2
⊢
n
=
m
→
−
i
A
n
=
−
i
A
m
38
id
⊢
n
=
m
→
n
=
m
39
37
38
oveq12d
⊢
n
=
m
→
−
i
A
n
n
=
−
i
A
m
m
40
eqid
⊢
n
∈
ℕ
⟼
−
i
A
n
n
=
n
∈
ℕ
⟼
−
i
A
n
n
41
ovex
⊢
−
i
A
m
m
∈
V
42
39
40
41
fvmpt
⊢
m
∈
ℕ
→
n
∈
ℕ
⟼
−
i
A
n
n
m
=
−
i
A
m
m
43
42
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
n
∈
ℕ
⟼
−
i
A
n
n
m
=
−
i
A
m
m
44
nnnn0
⊢
m
∈
ℕ
→
m
∈
ℕ
0
45
expcl
⊢
−
i
A
∈
ℂ
∧
m
∈
ℕ
0
→
−
i
A
m
∈
ℂ
46
10
44
45
syl2an
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
A
m
∈
ℂ
47
nncn
⊢
m
∈
ℕ
→
m
∈
ℂ
48
47
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
m
∈
ℂ
49
nnne0
⊢
m
∈
ℕ
→
m
≠
0
50
49
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
m
≠
0
51
46
48
50
divcld
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
A
m
m
∈
ℂ
52
43
51
eqeltrd
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
n
∈
ℕ
⟼
−
i
A
n
n
m
∈
ℂ
53
2
3
52
serf
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
:
ℕ
⟶
ℂ
54
53
ffvelcdmda
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
k
∈
ℂ
55
oveq2
⊢
n
=
m
→
i
A
n
=
i
A
m
56
55
38
oveq12d
⊢
n
=
m
→
i
A
n
n
=
i
A
m
m
57
eqid
⊢
n
∈
ℕ
⟼
i
A
n
n
=
n
∈
ℕ
⟼
i
A
n
n
58
ovex
⊢
i
A
m
m
∈
V
59
56
57
58
fvmpt
⊢
m
∈
ℕ
→
n
∈
ℕ
⟼
i
A
n
n
m
=
i
A
m
m
60
59
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
n
∈
ℕ
⟼
i
A
n
n
m
=
i
A
m
m
61
expcl
⊢
i
A
∈
ℂ
∧
m
∈
ℕ
0
→
i
A
m
∈
ℂ
62
9
44
61
syl2an
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
A
m
∈
ℂ
63
62
48
50
divcld
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
A
m
m
∈
ℂ
64
60
63
eqeltrd
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
n
∈
ℕ
⟼
i
A
n
n
m
∈
ℂ
65
2
3
64
serf
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
i
A
n
n
:
ℕ
⟶
ℂ
66
65
ffvelcdmda
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
seq
1
+
n
∈
ℕ
⟼
i
A
n
n
k
∈
ℂ
67
simpr
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
k
∈
ℕ
68
67
2
eleqtrdi
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
k
∈
ℤ
≥
1
69
simpl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
A
∈
ℂ
∧
A
<
1
70
elfznn
⊢
m
∈
1
…
k
→
m
∈
ℕ
71
69
70
52
syl2an
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
∧
m
∈
1
…
k
→
n
∈
ℕ
⟼
−
i
A
n
n
m
∈
ℂ
72
69
70
64
syl2an
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
∧
m
∈
1
…
k
→
n
∈
ℕ
⟼
i
A
n
n
m
∈
ℂ
73
39
56
oveq12d
⊢
n
=
m
→
−
i
A
n
n
−
i
A
n
n
=
−
i
A
m
m
−
i
A
m
m
74
eqid
⊢
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
=
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
75
ovex
⊢
−
i
A
m
m
−
i
A
m
m
∈
V
76
73
74
75
fvmpt
⊢
m
∈
ℕ
→
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
m
=
−
i
A
m
m
−
i
A
m
m
77
76
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
m
=
−
i
A
m
m
−
i
A
m
m
78
43
60
oveq12d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
n
∈
ℕ
⟼
−
i
A
n
n
m
−
n
∈
ℕ
⟼
i
A
n
n
m
=
−
i
A
m
m
−
i
A
m
m
79
77
78
eqtr4d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
m
=
n
∈
ℕ
⟼
−
i
A
n
n
m
−
n
∈
ℕ
⟼
i
A
n
n
m
80
69
70
79
syl2an
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
∧
m
∈
1
…
k
→
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
m
=
n
∈
ℕ
⟼
−
i
A
n
n
m
−
n
∈
ℕ
⟼
i
A
n
n
m
81
68
71
72
80
sersub
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
k
=
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
k
−
seq
1
+
n
∈
ℕ
⟼
i
A
n
n
k
82
2
3
31
33
36
54
66
81
climsub
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
⇝
-
log
1
+
i
A
-
−
log
1
−
i
A
83
addcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
+
i
A
∈
ℂ
84
26
9
83
sylancr
⊢
A
∈
ℂ
∧
A
<
1
→
1
+
i
A
∈
ℂ
85
bndatandm
⊢
A
∈
ℂ
∧
A
<
1
→
A
∈
dom
arctan
86
atandm2
⊢
A
∈
dom
arctan
↔
A
∈
ℂ
∧
1
−
i
A
≠
0
∧
1
+
i
A
≠
0
87
85
86
sylib
⊢
A
∈
ℂ
∧
A
<
1
→
A
∈
ℂ
∧
1
−
i
A
≠
0
∧
1
+
i
A
≠
0
88
87
simp3d
⊢
A
∈
ℂ
∧
A
<
1
→
1
+
i
A
≠
0
89
84
88
logcld
⊢
A
∈
ℂ
∧
A
<
1
→
log
1
+
i
A
∈
ℂ
90
subcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
−
i
A
∈
ℂ
91
26
9
90
sylancr
⊢
A
∈
ℂ
∧
A
<
1
→
1
−
i
A
∈
ℂ
92
87
simp2d
⊢
A
∈
ℂ
∧
A
<
1
→
1
−
i
A
≠
0
93
91
92
logcld
⊢
A
∈
ℂ
∧
A
<
1
→
log
1
−
i
A
∈
ℂ
94
89
93
neg2subd
⊢
A
∈
ℂ
∧
A
<
1
→
-
log
1
+
i
A
-
−
log
1
−
i
A
=
log
1
−
i
A
−
log
1
+
i
A
95
82
94
breqtrd
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
⇝
log
1
−
i
A
−
log
1
+
i
A
96
51
63
subcld
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
A
m
m
−
i
A
m
m
∈
ℂ
97
77
96
eqeltrd
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
m
∈
ℂ
98
4
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
∈
ℂ
99
negicn
⊢
−
i
∈
ℂ
100
44
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
m
∈
ℕ
0
101
expcl
⊢
−
i
∈
ℂ
∧
m
∈
ℕ
0
→
−
i
m
∈
ℂ
102
99
100
101
sylancr
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
m
∈
ℂ
103
expcl
⊢
i
∈
ℂ
∧
m
∈
ℕ
0
→
i
m
∈
ℂ
104
4
100
103
sylancr
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
m
∈
ℂ
105
102
104
subcld
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
m
−
i
m
∈
ℂ
106
2cnd
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
2
∈
ℂ
107
2ne0
⊢
2
≠
0
108
107
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
2
≠
0
109
98
105
106
108
div23d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
−
i
m
−
i
m
2
=
i
2
−
i
m
−
i
m
110
109
oveq1d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
−
i
m
−
i
m
2
A
m
m
=
i
2
−
i
m
−
i
m
A
m
m
111
6
adantr
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
2
∈
ℂ
112
expcl
⊢
A
∈
ℂ
∧
m
∈
ℕ
0
→
A
m
∈
ℂ
113
7
44
112
syl2an
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
A
m
∈
ℂ
114
113
48
50
divcld
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
A
m
m
∈
ℂ
115
111
105
114
mulassd
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
2
−
i
m
−
i
m
A
m
m
=
i
2
−
i
m
−
i
m
A
m
m
116
102
104
113
subdird
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
m
−
i
m
A
m
=
−
i
m
A
m
−
i
m
A
m
117
7
adantr
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
A
∈
ℂ
118
mulneg1
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
−
i
A
=
−
i
A
119
4
117
118
sylancr
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
A
=
−
i
A
120
119
oveq1d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
A
m
=
−
i
A
m
121
99
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
∈
ℂ
122
121
117
100
mulexpd
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
A
m
=
−
i
m
A
m
123
120
122
eqtr3d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
A
m
=
−
i
m
A
m
124
98
117
100
mulexpd
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
A
m
=
i
m
A
m
125
123
124
oveq12d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
A
m
−
i
A
m
=
−
i
m
A
m
−
i
m
A
m
126
116
125
eqtr4d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
m
−
i
m
A
m
=
−
i
A
m
−
i
A
m
127
126
oveq1d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
m
−
i
m
A
m
m
=
−
i
A
m
−
i
A
m
m
128
105
113
48
50
divassd
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
m
−
i
m
A
m
m
=
−
i
m
−
i
m
A
m
m
129
46
62
48
50
divsubdird
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
A
m
−
i
A
m
m
=
−
i
A
m
m
−
i
A
m
m
130
127
128
129
3eqtr3d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
−
i
m
−
i
m
A
m
m
=
−
i
A
m
m
−
i
A
m
m
131
130
oveq2d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
2
−
i
m
−
i
m
A
m
m
=
i
2
−
i
A
m
m
−
i
A
m
m
132
110
115
131
3eqtrd
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
−
i
m
−
i
m
2
A
m
m
=
i
2
−
i
A
m
m
−
i
A
m
m
133
oveq2
⊢
n
=
m
→
−
i
n
=
−
i
m
134
oveq2
⊢
n
=
m
→
i
n
=
i
m
135
133
134
oveq12d
⊢
n
=
m
→
−
i
n
−
i
n
=
−
i
m
−
i
m
136
135
oveq2d
⊢
n
=
m
→
i
−
i
n
−
i
n
=
i
−
i
m
−
i
m
137
136
oveq1d
⊢
n
=
m
→
i
−
i
n
−
i
n
2
=
i
−
i
m
−
i
m
2
138
oveq2
⊢
n
=
m
→
A
n
=
A
m
139
138
38
oveq12d
⊢
n
=
m
→
A
n
n
=
A
m
m
140
137
139
oveq12d
⊢
n
=
m
→
i
−
i
n
−
i
n
2
A
n
n
=
i
−
i
m
−
i
m
2
A
m
m
141
ovex
⊢
i
−
i
m
−
i
m
2
A
m
m
∈
V
142
140
1
141
fvmpt
⊢
m
∈
ℕ
→
F
m
=
i
−
i
m
−
i
m
2
A
m
m
143
142
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
F
m
=
i
−
i
m
−
i
m
2
A
m
m
144
77
oveq2d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
i
2
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
m
=
i
2
−
i
A
m
m
−
i
A
m
m
145
132
143
144
3eqtr4d
⊢
A
∈
ℂ
∧
A
<
1
∧
m
∈
ℕ
→
F
m
=
i
2
n
∈
ℕ
⟼
−
i
A
n
n
−
i
A
n
n
m
146
2
3
6
95
97
145
isermulc2
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
F
⇝
i
2
log
1
−
i
A
−
log
1
+
i
A
147
atanval
⊢
A
∈
dom
arctan
→
arctan
A
=
i
2
log
1
−
i
A
−
log
1
+
i
A
148
85
147
syl
⊢
A
∈
ℂ
∧
A
<
1
→
arctan
A
=
i
2
log
1
−
i
A
−
log
1
+
i
A
149
146
148
breqtrrd
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
F
⇝
arctan
A