Metamath Proof Explorer


Theorem atantayl2

Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Hypothesis atantayl2.1 F=nif2n01n12Ann
Assertion atantayl2 AA<1seq1+FarctanA

Proof

Step Hyp Ref Expression
1 atantayl2.1 F=nif2n01n12Ann
2 ax-icn i
3 2 negcli i
4 3 a1i AA<1n2ni
5 nnnn0 nn0
6 5 ad2antlr AA<1n2nn0
7 4 6 expcld AA<1n2nin
8 sqneg ii2=i2
9 2 8 ax-mp i2=i2
10 9 oveq1i i2n2=i2n2
11 ine0 i0
12 2 11 negne0i i0
13 12 a1i AA<1n2ni0
14 2z 2
15 14 a1i AA<1n2n2
16 2ne0 20
17 nnz nn
18 17 adantl AA<1nn
19 dvdsval2 220n2nn2
20 14 16 18 19 mp3an12i AA<1n2nn2
21 20 biimpa AA<1n2nn2
22 expmulz ii02n2i2n2=i2n2
23 4 13 15 21 22 syl22anc AA<1n2ni2n2=i2n2
24 2 a1i AA<1n2ni
25 11 a1i AA<1n2ni0
26 expmulz ii02n2i2n2=i2n2
27 24 25 15 21 26 syl22anc AA<1n2ni2n2=i2n2
28 10 23 27 3eqtr4a AA<1n2ni2n2=i2n2
29 nncn nn
30 29 ad2antlr AA<1n2nn
31 2cnd AA<1n2n2
32 16 a1i AA<1n2n20
33 30 31 32 divcan2d AA<1n2n2n2=n
34 33 oveq2d AA<1n2ni2n2=in
35 33 oveq2d AA<1n2ni2n2=in
36 28 34 35 3eqtr3d AA<1n2nin=in
37 7 36 subeq0bd AA<1n2ninin=0
38 37 oveq2d AA<1n2niinin=i0
39 it0e0 i0=0
40 38 39 eqtrdi AA<1n2niinin=0
41 40 oveq1d AA<1n2niinin2=02
42 2cn 2
43 42 16 div0i 02=0
44 41 43 eqtrdi AA<1n2niinin2=0
45 44 oveq1d AA<1n2niinin2Ann=0Ann
46 simplll AA<1n2nA
47 46 6 expcld AA<1n2nAn
48 nnne0 nn0
49 48 ad2antlr AA<1n2nn0
50 47 30 49 divcld AA<1n2nAnn
51 50 mul02d AA<1n2n0Ann=0
52 45 51 eqtr2d AA<1n2n0=iinin2Ann
53 2cnd AA<1n¬2n2
54 ax-1cn 1
55 54 negcli 1
56 55 a1i AA<1n¬2n1
57 neg1ne0 10
58 57 a1i AA<1n¬2n10
59 29 ad2antlr AA<1n¬2nn
60 peano2cn nn+1
61 59 60 syl AA<1n¬2nn+1
62 16 a1i AA<1n¬2n20
63 61 53 53 62 divsubdird AA<1n¬2nn+1-22=n+1222
64 2div2e1 22=1
65 64 oveq2i n+1222=n+121
66 63 65 eqtrdi AA<1n¬2nn+1-22=n+121
67 df-2 2=1+1
68 67 oveq2i n+1-2=n+1-1+1
69 54 a1i AA<1n¬2n1
70 59 69 69 pnpcan2d AA<1n¬2nn+1-1+1=n1
71 68 70 eqtrid AA<1n¬2nn+1-2=n1
72 71 oveq1d AA<1n¬2nn+1-22=n12
73 66 72 eqtr3d AA<1n¬2nn+121=n12
74 20 notbid AA<1n¬2n¬n2
75 zeo nn2n+12
76 18 75 syl AA<1nn2n+12
77 76 ord AA<1n¬n2n+12
78 74 77 sylbid AA<1n¬2nn+12
79 78 imp AA<1n¬2nn+12
80 peano2zm n+12n+121
81 79 80 syl AA<1n¬2nn+121
82 73 81 eqeltrrd AA<1n¬2nn12
83 56 58 82 expclzd AA<1n¬2n1n12
84 83 2timesd AA<1n¬2n21n12=1n12+1n12
85 subcl n1n1
86 59 54 85 sylancl AA<1n¬2nn1
87 86 53 62 divcan2d AA<1n¬2n2n12=n1
88 87 oveq2d AA<1n¬2ni2n12=in1
89 3 a1i AA<1n¬2ni
90 12 a1i AA<1n¬2ni0
91 17 ad2antlr AA<1n¬2nn
92 89 90 91 expm1d AA<1n¬2nin1=ini
93 88 92 eqtrd AA<1n¬2ni2n12=ini
94 14 a1i AA<1n¬2n2
95 expmulz ii02n12i2n12=i2n12
96 89 90 94 82 95 syl22anc AA<1n¬2ni2n12=i2n12
97 5 ad2antlr AA<1n¬2nn0
98 expcl in0in
99 3 97 98 sylancr AA<1n¬2nin
100 99 89 90 divrec2d AA<1n¬2nini=1iin
101 93 96 100 3eqtr3d AA<1n¬2ni2n12=1iin
102 i2 i2=1
103 9 102 eqtri i2=1
104 103 oveq1i i2n12=1n12
105 irec 1i=i
106 105 negeqi 1i=i
107 divneg2 1ii01i=1i
108 54 2 11 107 mp3an 1i=1i
109 2 negnegi i=i
110 106 108 109 3eqtr3i 1i=i
111 110 oveq1i 1iin=iin
112 101 104 111 3eqtr3g AA<1n¬2n1n12=iin
113 87 oveq2d AA<1n¬2ni2n12=in1
114 2 a1i AA<1n¬2ni
115 11 a1i AA<1n¬2ni0
116 114 115 91 expm1d AA<1n¬2nin1=ini
117 113 116 eqtrd AA<1n¬2ni2n12=ini
118 expmulz ii02n12i2n12=i2n12
119 114 115 94 82 118 syl22anc AA<1n¬2ni2n12=i2n12
120 expcl in0in
121 2 97 120 sylancr AA<1n¬2nin
122 121 114 115 divrec2d AA<1n¬2nini=1iin
123 117 119 122 3eqtr3d AA<1n¬2ni2n12=1iin
124 102 oveq1i i2n12=1n12
125 105 oveq1i 1iin=iin
126 123 124 125 3eqtr3g AA<1n¬2n1n12=iin
127 mulneg1 iiniin=iin
128 2 121 127 sylancr AA<1n¬2niin=iin
129 126 128 eqtrd AA<1n¬2n1n12=iin
130 112 129 oveq12d AA<1n¬2n1n12+1n12=iin+iin
131 mulcl iiniin
132 2 99 131 sylancr AA<1n¬2niin
133 mulcl iiniin
134 2 121 133 sylancr AA<1n¬2niin
135 132 134 negsubd AA<1n¬2niin+iin=iiniin
136 114 99 121 subdid AA<1n¬2niinin=iiniin
137 135 136 eqtr4d AA<1n¬2niin+iin=iinin
138 84 130 137 3eqtrd AA<1n¬2n21n12=iinin
139 53 83 62 138 mvllmuld AA<1n¬2n1n12=iinin2
140 139 oveq1d AA<1n¬2n1n12Ann=iinin2Ann
141 52 140 ifeqda AA<1nif2n01n12Ann=iinin2Ann
142 141 mpteq2dva AA<1nif2n01n12Ann=niinin2Ann
143 1 142 eqtrid AA<1F=niinin2Ann
144 143 seqeq3d AA<1seq1+F=seq1+niinin2Ann
145 eqid niinin2Ann=niinin2Ann
146 145 atantayl AA<1seq1+niinin2AnnarctanA
147 144 146 eqbrtrd AA<1seq1+FarctanA