Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atantayl2
Next ⟩
atantayl3
Metamath Proof Explorer
Ascii
Unicode
Theorem
atantayl2
Description:
The Taylor series for
arctan ( A )
.
(Contributed by
Mario Carneiro
, 1-Apr-2015)
Ref
Expression
Hypothesis
atantayl2.1
⊢
F
=
n
∈
ℕ
⟼
if
2
∥
n
0
−
1
n
−
1
2
A
n
n
Assertion
atantayl2
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
F
⇝
arctan
A
Proof
Step
Hyp
Ref
Expression
1
atantayl2.1
⊢
F
=
n
∈
ℕ
⟼
if
2
∥
n
0
−
1
n
−
1
2
A
n
n
2
ax-icn
⊢
i
∈
ℂ
3
2
negcli
⊢
−
i
∈
ℂ
4
3
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
−
i
∈
ℂ
5
nnnn0
⊢
n
∈
ℕ
→
n
∈
ℕ
0
6
5
ad2antlr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
n
∈
ℕ
0
7
4
6
expcld
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
−
i
n
∈
ℂ
8
sqneg
⊢
i
∈
ℂ
→
−
i
2
=
i
2
9
2
8
ax-mp
⊢
−
i
2
=
i
2
10
9
oveq1i
⊢
−
i
2
n
2
=
i
2
n
2
11
ine0
⊢
i
≠
0
12
2
11
negne0i
⊢
−
i
≠
0
13
12
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
−
i
≠
0
14
2z
⊢
2
∈
ℤ
15
14
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
2
∈
ℤ
16
2ne0
⊢
2
≠
0
17
nnz
⊢
n
∈
ℕ
→
n
∈
ℤ
18
17
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
→
n
∈
ℤ
19
dvdsval2
⊢
2
∈
ℤ
∧
2
≠
0
∧
n
∈
ℤ
→
2
∥
n
↔
n
2
∈
ℤ
20
14
16
18
19
mp3an12i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
→
2
∥
n
↔
n
2
∈
ℤ
21
20
biimpa
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
n
2
∈
ℤ
22
expmulz
⊢
−
i
∈
ℂ
∧
−
i
≠
0
∧
2
∈
ℤ
∧
n
2
∈
ℤ
→
−
i
2
n
2
=
−
i
2
n
2
23
4
13
15
21
22
syl22anc
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
−
i
2
n
2
=
−
i
2
n
2
24
2
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
i
∈
ℂ
25
11
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
i
≠
0
26
expmulz
⊢
i
∈
ℂ
∧
i
≠
0
∧
2
∈
ℤ
∧
n
2
∈
ℤ
→
i
2
n
2
=
i
2
n
2
27
24
25
15
21
26
syl22anc
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
i
2
n
2
=
i
2
n
2
28
10
23
27
3eqtr4a
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
−
i
2
n
2
=
i
2
n
2
29
nncn
⊢
n
∈
ℕ
→
n
∈
ℂ
30
29
ad2antlr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
n
∈
ℂ
31
2cnd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
2
∈
ℂ
32
16
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
2
≠
0
33
30
31
32
divcan2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
2
n
2
=
n
34
33
oveq2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
−
i
2
n
2
=
−
i
n
35
33
oveq2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
i
2
n
2
=
i
n
36
28
34
35
3eqtr3d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
−
i
n
=
i
n
37
7
36
subeq0bd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
−
i
n
−
i
n
=
0
38
37
oveq2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
i
−
i
n
−
i
n
=
i
⋅
0
39
it0e0
⊢
i
⋅
0
=
0
40
38
39
eqtrdi
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
i
−
i
n
−
i
n
=
0
41
40
oveq1d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
i
−
i
n
−
i
n
2
=
0
2
42
2cn
⊢
2
∈
ℂ
43
42
16
div0i
⊢
0
2
=
0
44
41
43
eqtrdi
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
i
−
i
n
−
i
n
2
=
0
45
44
oveq1d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
i
−
i
n
−
i
n
2
A
n
n
=
0
⋅
A
n
n
46
simplll
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
A
∈
ℂ
47
46
6
expcld
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
A
n
∈
ℂ
48
nnne0
⊢
n
∈
ℕ
→
n
≠
0
49
48
ad2antlr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
n
≠
0
50
47
30
49
divcld
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
A
n
n
∈
ℂ
51
50
mul02d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
0
⋅
A
n
n
=
0
52
45
51
eqtr2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
2
∥
n
→
0
=
i
−
i
n
−
i
n
2
A
n
n
53
2cnd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
2
∈
ℂ
54
ax-1cn
⊢
1
∈
ℂ
55
54
negcli
⊢
−
1
∈
ℂ
56
55
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
1
∈
ℂ
57
neg1ne0
⊢
−
1
≠
0
58
57
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
1
≠
0
59
29
ad2antlr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
∈
ℂ
60
peano2cn
⊢
n
∈
ℂ
→
n
+
1
∈
ℂ
61
59
60
syl
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
+
1
∈
ℂ
62
16
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
2
≠
0
63
61
53
53
62
divsubdird
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
+
1
-
2
2
=
n
+
1
2
−
2
2
64
2div2e1
⊢
2
2
=
1
65
64
oveq2i
⊢
n
+
1
2
−
2
2
=
n
+
1
2
−
1
66
63
65
eqtrdi
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
+
1
-
2
2
=
n
+
1
2
−
1
67
df-2
⊢
2
=
1
+
1
68
67
oveq2i
⊢
n
+
1
-
2
=
n
+
1
-
1
+
1
69
54
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
1
∈
ℂ
70
59
69
69
pnpcan2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
+
1
-
1
+
1
=
n
−
1
71
68
70
eqtrid
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
+
1
-
2
=
n
−
1
72
71
oveq1d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
+
1
-
2
2
=
n
−
1
2
73
66
72
eqtr3d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
+
1
2
−
1
=
n
−
1
2
74
20
notbid
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
→
¬
2
∥
n
↔
¬
n
2
∈
ℤ
75
zeo
⊢
n
∈
ℤ
→
n
2
∈
ℤ
∨
n
+
1
2
∈
ℤ
76
18
75
syl
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
→
n
2
∈
ℤ
∨
n
+
1
2
∈
ℤ
77
76
ord
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
→
¬
n
2
∈
ℤ
→
n
+
1
2
∈
ℤ
78
74
77
sylbid
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
→
¬
2
∥
n
→
n
+
1
2
∈
ℤ
79
78
imp
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
+
1
2
∈
ℤ
80
peano2zm
⊢
n
+
1
2
∈
ℤ
→
n
+
1
2
−
1
∈
ℤ
81
79
80
syl
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
+
1
2
−
1
∈
ℤ
82
73
81
eqeltrrd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
−
1
2
∈
ℤ
83
56
58
82
expclzd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
1
n
−
1
2
∈
ℂ
84
83
2timesd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
2
−
1
n
−
1
2
=
−
1
n
−
1
2
+
−
1
n
−
1
2
85
subcl
⊢
n
∈
ℂ
∧
1
∈
ℂ
→
n
−
1
∈
ℂ
86
59
54
85
sylancl
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
−
1
∈
ℂ
87
86
53
62
divcan2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
2
n
−
1
2
=
n
−
1
88
87
oveq2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
2
n
−
1
2
=
−
i
n
−
1
89
3
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
∈
ℂ
90
12
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
≠
0
91
17
ad2antlr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
∈
ℤ
92
89
90
91
expm1d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
n
−
1
=
−
i
n
−
i
93
88
92
eqtrd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
2
n
−
1
2
=
−
i
n
−
i
94
14
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
2
∈
ℤ
95
expmulz
⊢
−
i
∈
ℂ
∧
−
i
≠
0
∧
2
∈
ℤ
∧
n
−
1
2
∈
ℤ
→
−
i
2
n
−
1
2
=
−
i
2
n
−
1
2
96
89
90
94
82
95
syl22anc
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
2
n
−
1
2
=
−
i
2
n
−
1
2
97
5
ad2antlr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
n
∈
ℕ
0
98
expcl
⊢
−
i
∈
ℂ
∧
n
∈
ℕ
0
→
−
i
n
∈
ℂ
99
3
97
98
sylancr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
n
∈
ℂ
100
99
89
90
divrec2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
n
−
i
=
1
−
i
−
i
n
101
93
96
100
3eqtr3d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
2
n
−
1
2
=
1
−
i
−
i
n
102
i2
⊢
i
2
=
−
1
103
9
102
eqtri
⊢
−
i
2
=
−
1
104
103
oveq1i
⊢
−
i
2
n
−
1
2
=
−
1
n
−
1
2
105
irec
⊢
1
i
=
−
i
106
105
negeqi
⊢
−
1
i
=
−
−
i
107
divneg2
⊢
1
∈
ℂ
∧
i
∈
ℂ
∧
i
≠
0
→
−
1
i
=
1
−
i
108
54
2
11
107
mp3an
⊢
−
1
i
=
1
−
i
109
2
negnegi
⊢
−
−
i
=
i
110
106
108
109
3eqtr3i
⊢
1
−
i
=
i
111
110
oveq1i
⊢
1
−
i
−
i
n
=
i
−
i
n
112
101
104
111
3eqtr3g
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
1
n
−
1
2
=
i
−
i
n
113
87
oveq2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
2
n
−
1
2
=
i
n
−
1
114
2
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
∈
ℂ
115
11
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
≠
0
116
114
115
91
expm1d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
n
−
1
=
i
n
i
117
113
116
eqtrd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
2
n
−
1
2
=
i
n
i
118
expmulz
⊢
i
∈
ℂ
∧
i
≠
0
∧
2
∈
ℤ
∧
n
−
1
2
∈
ℤ
→
i
2
n
−
1
2
=
i
2
n
−
1
2
119
114
115
94
82
118
syl22anc
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
2
n
−
1
2
=
i
2
n
−
1
2
120
expcl
⊢
i
∈
ℂ
∧
n
∈
ℕ
0
→
i
n
∈
ℂ
121
2
97
120
sylancr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
n
∈
ℂ
122
121
114
115
divrec2d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
n
i
=
1
i
i
n
123
117
119
122
3eqtr3d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
2
n
−
1
2
=
1
i
i
n
124
102
oveq1i
⊢
i
2
n
−
1
2
=
−
1
n
−
1
2
125
105
oveq1i
⊢
1
i
i
n
=
−
i
i
n
126
123
124
125
3eqtr3g
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
1
n
−
1
2
=
−
i
i
n
127
mulneg1
⊢
i
∈
ℂ
∧
i
n
∈
ℂ
→
−
i
i
n
=
−
i
i
n
128
2
121
127
sylancr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
i
i
n
=
−
i
i
n
129
126
128
eqtrd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
1
n
−
1
2
=
−
i
i
n
130
112
129
oveq12d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
1
n
−
1
2
+
−
1
n
−
1
2
=
i
−
i
n
+
−
i
i
n
131
mulcl
⊢
i
∈
ℂ
∧
−
i
n
∈
ℂ
→
i
−
i
n
∈
ℂ
132
2
99
131
sylancr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
−
i
n
∈
ℂ
133
mulcl
⊢
i
∈
ℂ
∧
i
n
∈
ℂ
→
i
i
n
∈
ℂ
134
2
121
133
sylancr
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
i
n
∈
ℂ
135
132
134
negsubd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
−
i
n
+
−
i
i
n
=
i
−
i
n
−
i
i
n
136
114
99
121
subdid
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
−
i
n
−
i
n
=
i
−
i
n
−
i
i
n
137
135
136
eqtr4d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
i
−
i
n
+
−
i
i
n
=
i
−
i
n
−
i
n
138
84
130
137
3eqtrd
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
2
−
1
n
−
1
2
=
i
−
i
n
−
i
n
139
53
83
62
138
mvllmuld
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
1
n
−
1
2
=
i
−
i
n
−
i
n
2
140
139
oveq1d
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
∧
¬
2
∥
n
→
−
1
n
−
1
2
A
n
n
=
i
−
i
n
−
i
n
2
A
n
n
141
52
140
ifeqda
⊢
A
∈
ℂ
∧
A
<
1
∧
n
∈
ℕ
→
if
2
∥
n
0
−
1
n
−
1
2
A
n
n
=
i
−
i
n
−
i
n
2
A
n
n
142
141
mpteq2dva
⊢
A
∈
ℂ
∧
A
<
1
→
n
∈
ℕ
⟼
if
2
∥
n
0
−
1
n
−
1
2
A
n
n
=
n
∈
ℕ
⟼
i
−
i
n
−
i
n
2
A
n
n
143
1
142
eqtrid
⊢
A
∈
ℂ
∧
A
<
1
→
F
=
n
∈
ℕ
⟼
i
−
i
n
−
i
n
2
A
n
n
144
143
seqeq3d
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
F
=
seq
1
+
n
∈
ℕ
⟼
i
−
i
n
−
i
n
2
A
n
n
145
eqid
⊢
n
∈
ℕ
⟼
i
−
i
n
−
i
n
2
A
n
n
=
n
∈
ℕ
⟼
i
−
i
n
−
i
n
2
A
n
n
146
145
atantayl
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
n
∈
ℕ
⟼
i
−
i
n
−
i
n
2
A
n
n
⇝
arctan
A
147
144
146
eqbrtrd
⊢
A
∈
ℂ
∧
A
<
1
→
seq
1
+
F
⇝
arctan
A