| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atantayl2.1 |  |-  F = ( n e. NN |-> if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) x. ( ( A ^ n ) / n ) ) ) ) | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 | 2 | negcli |  |-  -u _i e. CC | 
						
							| 4 | 3 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> -u _i e. CC ) | 
						
							| 5 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 6 | 5 | ad2antlr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> n e. NN0 ) | 
						
							| 7 | 4 6 | expcld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ n ) e. CC ) | 
						
							| 8 |  | sqneg |  |-  ( _i e. CC -> ( -u _i ^ 2 ) = ( _i ^ 2 ) ) | 
						
							| 9 | 2 8 | ax-mp |  |-  ( -u _i ^ 2 ) = ( _i ^ 2 ) | 
						
							| 10 | 9 | oveq1i |  |-  ( ( -u _i ^ 2 ) ^ ( n / 2 ) ) = ( ( _i ^ 2 ) ^ ( n / 2 ) ) | 
						
							| 11 |  | ine0 |  |-  _i =/= 0 | 
						
							| 12 | 2 11 | negne0i |  |-  -u _i =/= 0 | 
						
							| 13 | 12 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> -u _i =/= 0 ) | 
						
							| 14 |  | 2z |  |-  2 e. ZZ | 
						
							| 15 | 14 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> 2 e. ZZ ) | 
						
							| 16 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 17 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> n e. ZZ ) | 
						
							| 19 |  | dvdsval2 |  |-  ( ( 2 e. ZZ /\ 2 =/= 0 /\ n e. ZZ ) -> ( 2 || n <-> ( n / 2 ) e. ZZ ) ) | 
						
							| 20 | 14 16 18 19 | mp3an12i |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( 2 || n <-> ( n / 2 ) e. ZZ ) ) | 
						
							| 21 | 20 | biimpa |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( n / 2 ) e. ZZ ) | 
						
							| 22 |  | expmulz |  |-  ( ( ( -u _i e. CC /\ -u _i =/= 0 ) /\ ( 2 e. ZZ /\ ( n / 2 ) e. ZZ ) ) -> ( -u _i ^ ( 2 x. ( n / 2 ) ) ) = ( ( -u _i ^ 2 ) ^ ( n / 2 ) ) ) | 
						
							| 23 | 4 13 15 21 22 | syl22anc |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ ( 2 x. ( n / 2 ) ) ) = ( ( -u _i ^ 2 ) ^ ( n / 2 ) ) ) | 
						
							| 24 | 2 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> _i e. CC ) | 
						
							| 25 | 11 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> _i =/= 0 ) | 
						
							| 26 |  | expmulz |  |-  ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( 2 e. ZZ /\ ( n / 2 ) e. ZZ ) ) -> ( _i ^ ( 2 x. ( n / 2 ) ) ) = ( ( _i ^ 2 ) ^ ( n / 2 ) ) ) | 
						
							| 27 | 24 25 15 21 26 | syl22anc |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( _i ^ ( 2 x. ( n / 2 ) ) ) = ( ( _i ^ 2 ) ^ ( n / 2 ) ) ) | 
						
							| 28 | 10 23 27 | 3eqtr4a |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ ( 2 x. ( n / 2 ) ) ) = ( _i ^ ( 2 x. ( n / 2 ) ) ) ) | 
						
							| 29 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 30 | 29 | ad2antlr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> n e. CC ) | 
						
							| 31 |  | 2cnd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> 2 e. CC ) | 
						
							| 32 | 16 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> 2 =/= 0 ) | 
						
							| 33 | 30 31 32 | divcan2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( 2 x. ( n / 2 ) ) = n ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ ( 2 x. ( n / 2 ) ) ) = ( -u _i ^ n ) ) | 
						
							| 35 | 33 | oveq2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( _i ^ ( 2 x. ( n / 2 ) ) ) = ( _i ^ n ) ) | 
						
							| 36 | 28 34 35 | 3eqtr3d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ n ) = ( _i ^ n ) ) | 
						
							| 37 | 7 36 | subeq0bd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( -u _i ^ n ) - ( _i ^ n ) ) = 0 ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) = ( _i x. 0 ) ) | 
						
							| 39 |  | it0e0 |  |-  ( _i x. 0 ) = 0 | 
						
							| 40 | 38 39 | eqtrdi |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) = 0 ) | 
						
							| 41 | 40 | oveq1d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) = ( 0 / 2 ) ) | 
						
							| 42 |  | 2cn |  |-  2 e. CC | 
						
							| 43 | 42 16 | div0i |  |-  ( 0 / 2 ) = 0 | 
						
							| 44 | 41 43 | eqtrdi |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) = 0 ) | 
						
							| 45 | 44 | oveq1d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) = ( 0 x. ( ( A ^ n ) / n ) ) ) | 
						
							| 46 |  | simplll |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> A e. CC ) | 
						
							| 47 | 46 6 | expcld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( A ^ n ) e. CC ) | 
						
							| 48 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 49 | 48 | ad2antlr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> n =/= 0 ) | 
						
							| 50 | 47 30 49 | divcld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( A ^ n ) / n ) e. CC ) | 
						
							| 51 | 50 | mul02d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( 0 x. ( ( A ^ n ) / n ) ) = 0 ) | 
						
							| 52 | 45 51 | eqtr2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> 0 = ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) | 
						
							| 53 |  | 2cnd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> 2 e. CC ) | 
						
							| 54 |  | ax-1cn |  |-  1 e. CC | 
						
							| 55 | 54 | negcli |  |-  -u 1 e. CC | 
						
							| 56 | 55 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> -u 1 e. CC ) | 
						
							| 57 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 58 | 57 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> -u 1 =/= 0 ) | 
						
							| 59 | 29 | ad2antlr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> n e. CC ) | 
						
							| 60 |  | peano2cn |  |-  ( n e. CC -> ( n + 1 ) e. CC ) | 
						
							| 61 | 59 60 | syl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( n + 1 ) e. CC ) | 
						
							| 62 | 16 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> 2 =/= 0 ) | 
						
							| 63 | 61 53 53 62 | divsubdird |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) - 2 ) / 2 ) = ( ( ( n + 1 ) / 2 ) - ( 2 / 2 ) ) ) | 
						
							| 64 |  | 2div2e1 |  |-  ( 2 / 2 ) = 1 | 
						
							| 65 | 64 | oveq2i |  |-  ( ( ( n + 1 ) / 2 ) - ( 2 / 2 ) ) = ( ( ( n + 1 ) / 2 ) - 1 ) | 
						
							| 66 | 63 65 | eqtrdi |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) - 2 ) / 2 ) = ( ( ( n + 1 ) / 2 ) - 1 ) ) | 
						
							| 67 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 68 | 67 | oveq2i |  |-  ( ( n + 1 ) - 2 ) = ( ( n + 1 ) - ( 1 + 1 ) ) | 
						
							| 69 | 54 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> 1 e. CC ) | 
						
							| 70 | 59 69 69 | pnpcan2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( n + 1 ) - ( 1 + 1 ) ) = ( n - 1 ) ) | 
						
							| 71 | 68 70 | eqtrid |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( n + 1 ) - 2 ) = ( n - 1 ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) - 2 ) / 2 ) = ( ( n - 1 ) / 2 ) ) | 
						
							| 73 | 66 72 | eqtr3d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) / 2 ) - 1 ) = ( ( n - 1 ) / 2 ) ) | 
						
							| 74 | 20 | notbid |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( -. 2 || n <-> -. ( n / 2 ) e. ZZ ) ) | 
						
							| 75 |  | zeo |  |-  ( n e. ZZ -> ( ( n / 2 ) e. ZZ \/ ( ( n + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 76 | 18 75 | syl |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( n / 2 ) e. ZZ \/ ( ( n + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 77 | 76 | ord |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( -. ( n / 2 ) e. ZZ -> ( ( n + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 78 | 74 77 | sylbid |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( -. 2 || n -> ( ( n + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 79 | 78 | imp |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( n + 1 ) / 2 ) e. ZZ ) | 
						
							| 80 |  | peano2zm |  |-  ( ( ( n + 1 ) / 2 ) e. ZZ -> ( ( ( n + 1 ) / 2 ) - 1 ) e. ZZ ) | 
						
							| 81 | 79 80 | syl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) / 2 ) - 1 ) e. ZZ ) | 
						
							| 82 | 73 81 | eqeltrrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( n - 1 ) / 2 ) e. ZZ ) | 
						
							| 83 | 56 58 82 | expclzd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) e. CC ) | 
						
							| 84 | 83 | 2timesd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( 2 x. ( -u 1 ^ ( ( n - 1 ) / 2 ) ) ) = ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) + ( -u 1 ^ ( ( n - 1 ) / 2 ) ) ) ) | 
						
							| 85 |  | subcl |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( n - 1 ) e. CC ) | 
						
							| 86 | 59 54 85 | sylancl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( n - 1 ) e. CC ) | 
						
							| 87 | 86 53 62 | divcan2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( 2 x. ( ( n - 1 ) / 2 ) ) = ( n - 1 ) ) | 
						
							| 88 | 87 | oveq2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( -u _i ^ ( n - 1 ) ) ) | 
						
							| 89 | 3 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> -u _i e. CC ) | 
						
							| 90 | 12 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> -u _i =/= 0 ) | 
						
							| 91 | 17 | ad2antlr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> n e. ZZ ) | 
						
							| 92 | 89 90 91 | expm1d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ ( n - 1 ) ) = ( ( -u _i ^ n ) / -u _i ) ) | 
						
							| 93 | 88 92 | eqtrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( -u _i ^ n ) / -u _i ) ) | 
						
							| 94 | 14 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> 2 e. ZZ ) | 
						
							| 95 |  | expmulz |  |-  ( ( ( -u _i e. CC /\ -u _i =/= 0 ) /\ ( 2 e. ZZ /\ ( ( n - 1 ) / 2 ) e. ZZ ) ) -> ( -u _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( -u _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) ) | 
						
							| 96 | 89 90 94 82 95 | syl22anc |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( -u _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) ) | 
						
							| 97 | 5 | ad2antlr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> n e. NN0 ) | 
						
							| 98 |  | expcl |  |-  ( ( -u _i e. CC /\ n e. NN0 ) -> ( -u _i ^ n ) e. CC ) | 
						
							| 99 | 3 97 98 | sylancr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ n ) e. CC ) | 
						
							| 100 | 99 89 90 | divrec2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( -u _i ^ n ) / -u _i ) = ( ( 1 / -u _i ) x. ( -u _i ^ n ) ) ) | 
						
							| 101 | 93 96 100 | 3eqtr3d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( -u _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) = ( ( 1 / -u _i ) x. ( -u _i ^ n ) ) ) | 
						
							| 102 |  | i2 |  |-  ( _i ^ 2 ) = -u 1 | 
						
							| 103 | 9 102 | eqtri |  |-  ( -u _i ^ 2 ) = -u 1 | 
						
							| 104 | 103 | oveq1i |  |-  ( ( -u _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) = ( -u 1 ^ ( ( n - 1 ) / 2 ) ) | 
						
							| 105 |  | irec |  |-  ( 1 / _i ) = -u _i | 
						
							| 106 | 105 | negeqi |  |-  -u ( 1 / _i ) = -u -u _i | 
						
							| 107 |  | divneg2 |  |-  ( ( 1 e. CC /\ _i e. CC /\ _i =/= 0 ) -> -u ( 1 / _i ) = ( 1 / -u _i ) ) | 
						
							| 108 | 54 2 11 107 | mp3an |  |-  -u ( 1 / _i ) = ( 1 / -u _i ) | 
						
							| 109 | 2 | negnegi |  |-  -u -u _i = _i | 
						
							| 110 | 106 108 109 | 3eqtr3i |  |-  ( 1 / -u _i ) = _i | 
						
							| 111 | 110 | oveq1i |  |-  ( ( 1 / -u _i ) x. ( -u _i ^ n ) ) = ( _i x. ( -u _i ^ n ) ) | 
						
							| 112 | 101 104 111 | 3eqtr3g |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) = ( _i x. ( -u _i ^ n ) ) ) | 
						
							| 113 | 87 | oveq2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( _i ^ ( n - 1 ) ) ) | 
						
							| 114 | 2 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> _i e. CC ) | 
						
							| 115 | 11 | a1i |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> _i =/= 0 ) | 
						
							| 116 | 114 115 91 | expm1d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ ( n - 1 ) ) = ( ( _i ^ n ) / _i ) ) | 
						
							| 117 | 113 116 | eqtrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( _i ^ n ) / _i ) ) | 
						
							| 118 |  | expmulz |  |-  ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( 2 e. ZZ /\ ( ( n - 1 ) / 2 ) e. ZZ ) ) -> ( _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) ) | 
						
							| 119 | 114 115 94 82 118 | syl22anc |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) ) | 
						
							| 120 |  | expcl |  |-  ( ( _i e. CC /\ n e. NN0 ) -> ( _i ^ n ) e. CC ) | 
						
							| 121 | 2 97 120 | sylancr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ n ) e. CC ) | 
						
							| 122 | 121 114 115 | divrec2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( _i ^ n ) / _i ) = ( ( 1 / _i ) x. ( _i ^ n ) ) ) | 
						
							| 123 | 117 119 122 | 3eqtr3d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) = ( ( 1 / _i ) x. ( _i ^ n ) ) ) | 
						
							| 124 | 102 | oveq1i |  |-  ( ( _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) = ( -u 1 ^ ( ( n - 1 ) / 2 ) ) | 
						
							| 125 | 105 | oveq1i |  |-  ( ( 1 / _i ) x. ( _i ^ n ) ) = ( -u _i x. ( _i ^ n ) ) | 
						
							| 126 | 123 124 125 | 3eqtr3g |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) = ( -u _i x. ( _i ^ n ) ) ) | 
						
							| 127 |  | mulneg1 |  |-  ( ( _i e. CC /\ ( _i ^ n ) e. CC ) -> ( -u _i x. ( _i ^ n ) ) = -u ( _i x. ( _i ^ n ) ) ) | 
						
							| 128 | 2 121 127 | sylancr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i x. ( _i ^ n ) ) = -u ( _i x. ( _i ^ n ) ) ) | 
						
							| 129 | 126 128 | eqtrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) = -u ( _i x. ( _i ^ n ) ) ) | 
						
							| 130 | 112 129 | oveq12d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) + ( -u 1 ^ ( ( n - 1 ) / 2 ) ) ) = ( ( _i x. ( -u _i ^ n ) ) + -u ( _i x. ( _i ^ n ) ) ) ) | 
						
							| 131 |  | mulcl |  |-  ( ( _i e. CC /\ ( -u _i ^ n ) e. CC ) -> ( _i x. ( -u _i ^ n ) ) e. CC ) | 
						
							| 132 | 2 99 131 | sylancr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i x. ( -u _i ^ n ) ) e. CC ) | 
						
							| 133 |  | mulcl |  |-  ( ( _i e. CC /\ ( _i ^ n ) e. CC ) -> ( _i x. ( _i ^ n ) ) e. CC ) | 
						
							| 134 | 2 121 133 | sylancr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i x. ( _i ^ n ) ) e. CC ) | 
						
							| 135 | 132 134 | negsubd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( _i x. ( -u _i ^ n ) ) + -u ( _i x. ( _i ^ n ) ) ) = ( ( _i x. ( -u _i ^ n ) ) - ( _i x. ( _i ^ n ) ) ) ) | 
						
							| 136 | 114 99 121 | subdid |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) = ( ( _i x. ( -u _i ^ n ) ) - ( _i x. ( _i ^ n ) ) ) ) | 
						
							| 137 | 135 136 | eqtr4d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( _i x. ( -u _i ^ n ) ) + -u ( _i x. ( _i ^ n ) ) ) = ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) ) | 
						
							| 138 | 84 130 137 | 3eqtrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( 2 x. ( -u 1 ^ ( ( n - 1 ) / 2 ) ) ) = ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) ) | 
						
							| 139 | 53 83 62 138 | mvllmuld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) = ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) ) | 
						
							| 140 | 139 | oveq1d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) x. ( ( A ^ n ) / n ) ) = ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) | 
						
							| 141 | 52 140 | ifeqda |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) x. ( ( A ^ n ) / n ) ) ) = ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) | 
						
							| 142 | 141 | mpteq2dva |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( n e. NN |-> if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) x. ( ( A ^ n ) / n ) ) ) ) = ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) ) | 
						
							| 143 | 1 142 | eqtrid |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> F = ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) ) | 
						
							| 144 | 143 | seqeq3d |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , F ) = seq 1 ( + , ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) ) ) | 
						
							| 145 |  | eqid |  |-  ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) = ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) | 
						
							| 146 | 145 | atantayl |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) ) ~~> ( arctan ` A ) ) | 
						
							| 147 | 144 146 | eqbrtrd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , F ) ~~> ( arctan ` A ) ) |