Metamath Proof Explorer


Theorem logtayl

Description: The Taylor series for -u log ( 1 - A ) . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion logtayl A A < 1 seq 1 + k A k k log 1 A

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 0zd A A < 1 0
3 eqeq1 k = n k = 0 n = 0
4 oveq2 k = n 1 k = 1 n
5 3 4 ifbieq2d k = n if k = 0 0 1 k = if n = 0 0 1 n
6 oveq2 k = n A k = A n
7 5 6 oveq12d k = n if k = 0 0 1 k A k = if n = 0 0 1 n A n
8 eqid k 0 if k = 0 0 1 k A k = k 0 if k = 0 0 1 k A k
9 ovex if n = 0 0 1 n A n V
10 7 8 9 fvmpt n 0 k 0 if k = 0 0 1 k A k n = if n = 0 0 1 n A n
11 10 adantl A A < 1 n 0 k 0 if k = 0 0 1 k A k n = if n = 0 0 1 n A n
12 0cnd A A < 1 n 0 n = 0 0
13 simpr A A < 1 n 0 n 0
14 elnn0 n 0 n n = 0
15 13 14 sylib A A < 1 n 0 n n = 0
16 15 ord A A < 1 n 0 ¬ n n = 0
17 16 con1d A A < 1 n 0 ¬ n = 0 n
18 17 imp A A < 1 n 0 ¬ n = 0 n
19 18 nnrecred A A < 1 n 0 ¬ n = 0 1 n
20 19 recnd A A < 1 n 0 ¬ n = 0 1 n
21 12 20 ifclda A A < 1 n 0 if n = 0 0 1 n
22 expcl A n 0 A n
23 22 adantlr A A < 1 n 0 A n
24 21 23 mulcld A A < 1 n 0 if n = 0 0 1 n A n
25 logtayllem A A < 1 seq 0 + k 0 if k = 0 0 1 k A k dom
26 1 2 11 24 25 isumclim2 A A < 1 seq 0 + k 0 if k = 0 0 1 k A k n 0 if n = 0 0 1 n A n
27 simpl A A < 1 A
28 0cn 0
29 eqid abs = abs
30 29 cnmetdval A 0 A abs 0 = A 0
31 27 28 30 sylancl A A < 1 A abs 0 = A 0
32 subid1 A A 0 = A
33 32 adantr A A < 1 A 0 = A
34 33 fveq2d A A < 1 A 0 = A
35 31 34 eqtrd A A < 1 A abs 0 = A
36 simpr A A < 1 A < 1
37 35 36 eqbrtrd A A < 1 A abs 0 < 1
38 cnxmet abs ∞Met
39 1xr 1 *
40 elbl3 abs ∞Met 1 * 0 A A 0 ball abs 1 A abs 0 < 1
41 38 39 40 mpanl12 0 A A 0 ball abs 1 A abs 0 < 1
42 28 27 41 sylancr A A < 1 A 0 ball abs 1 A abs 0 < 1
43 37 42 mpbird A A < 1 A 0 ball abs 1
44 tru
45 eqid 0 ball abs 1 = 0 ball abs 1
46 0cnd 0
47 39 a1i 1 *
48 ax-1cn 1
49 blssm abs ∞Met 0 1 * 0 ball abs 1
50 38 28 39 49 mp3an 0 ball abs 1
51 50 sseli y 0 ball abs 1 y
52 subcl 1 y 1 y
53 48 51 52 sylancr y 0 ball abs 1 1 y
54 51 abscld y 0 ball abs 1 y
55 29 cnmetdval y 0 y abs 0 = y 0
56 51 28 55 sylancl y 0 ball abs 1 y abs 0 = y 0
57 51 subid1d y 0 ball abs 1 y 0 = y
58 57 fveq2d y 0 ball abs 1 y 0 = y
59 56 58 eqtrd y 0 ball abs 1 y abs 0 = y
60 elbl3 abs ∞Met 1 * 0 y y 0 ball abs 1 y abs 0 < 1
61 38 39 60 mpanl12 0 y y 0 ball abs 1 y abs 0 < 1
62 28 51 61 sylancr y 0 ball abs 1 y 0 ball abs 1 y abs 0 < 1
63 62 ibi y 0 ball abs 1 y abs 0 < 1
64 59 63 eqbrtrrd y 0 ball abs 1 y < 1
65 54 64 gtned y 0 ball abs 1 1 y
66 abs1 1 = 1
67 fveq2 1 = y 1 = y
68 66 67 eqtr3id 1 = y 1 = y
69 68 necon3i 1 y 1 y
70 65 69 syl y 0 ball abs 1 1 y
71 subeq0 1 y 1 y = 0 1 = y
72 71 necon3bid 1 y 1 y 0 1 y
73 48 51 72 sylancr y 0 ball abs 1 1 y 0 1 y
74 70 73 mpbird y 0 ball abs 1 1 y 0
75 53 74 logcld y 0 ball abs 1 log 1 y
76 75 negcld y 0 ball abs 1 log 1 y
77 76 adantl y 0 ball abs 1 log 1 y
78 77 fmpttd y 0 ball abs 1 log 1 y : 0 ball abs 1
79 51 absge0d y 0 ball abs 1 0 y
80 54 rexrd y 0 ball abs 1 y *
81 peano2re y y + 1
82 54 81 syl y 0 ball abs 1 y + 1
83 82 rehalfcld y 0 ball abs 1 y + 1 2
84 83 rexrd y 0 ball abs 1 y + 1 2 *
85 iccssxr 0 +∞ *
86 eqeq1 m = j m = 0 j = 0
87 oveq2 m = j 1 m = 1 j
88 86 87 ifbieq2d m = j if m = 0 0 1 m = if j = 0 0 1 j
89 eqid m 0 if m = 0 0 1 m = m 0 if m = 0 0 1 m
90 c0ex 0 V
91 ovex 1 j V
92 90 91 ifex if j = 0 0 1 j V
93 88 89 92 fvmpt j 0 m 0 if m = 0 0 1 m j = if j = 0 0 1 j
94 93 eqcomd j 0 if j = 0 0 1 j = m 0 if m = 0 0 1 m j
95 94 oveq1d j 0 if j = 0 0 1 j x j = m 0 if m = 0 0 1 m j x j
96 95 mpteq2ia j 0 if j = 0 0 1 j x j = j 0 m 0 if m = 0 0 1 m j x j
97 96 mpteq2i x j 0 if j = 0 0 1 j x j = x j 0 m 0 if m = 0 0 1 m j x j
98 0cnd m 0 m = 0 0
99 nn0cn m 0 m
100 99 adantl m 0 m
101 neqne ¬ m = 0 m 0
102 reccl m m 0 1 m
103 100 101 102 syl2an m 0 ¬ m = 0 1 m
104 98 103 ifclda m 0 if m = 0 0 1 m
105 104 fmpttd m 0 if m = 0 0 1 m : 0
106 recn r r
107 oveq1 x = r x j = r j
108 107 oveq2d x = r if j = 0 0 1 j x j = if j = 0 0 1 j r j
109 108 mpteq2dv x = r j 0 if j = 0 0 1 j x j = j 0 if j = 0 0 1 j r j
110 eqid x j 0 if j = 0 0 1 j x j = x j 0 if j = 0 0 1 j x j
111 nn0ex 0 V
112 111 mptex j 0 if j = 0 0 1 j r j V
113 109 110 112 fvmpt r x j 0 if j = 0 0 1 j x j r = j 0 if j = 0 0 1 j r j
114 106 113 syl r x j 0 if j = 0 0 1 j x j r = j 0 if j = 0 0 1 j r j
115 114 eqcomd r j 0 if j = 0 0 1 j r j = x j 0 if j = 0 0 1 j x j r
116 115 seqeq3d r seq 0 + j 0 if j = 0 0 1 j r j = seq 0 + x j 0 if j = 0 0 1 j x j r
117 116 eleq1d r seq 0 + j 0 if j = 0 0 1 j r j dom seq 0 + x j 0 if j = 0 0 1 j x j r dom
118 117 rabbiia r | seq 0 + j 0 if j = 0 0 1 j r j dom = r | seq 0 + x j 0 if j = 0 0 1 j x j r dom
119 118 supeq1i sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < = sup r | seq 0 + x j 0 if j = 0 0 1 j x j r dom * <
120 97 105 119 radcnvcl sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < 0 +∞
121 85 120 sselid sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < *
122 44 121 mp1i y 0 ball abs 1 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < *
123 1re 1
124 avglt1 y 1 y < 1 y < y + 1 2
125 54 123 124 sylancl y 0 ball abs 1 y < 1 y < y + 1 2
126 64 125 mpbid y 0 ball abs 1 y < y + 1 2
127 0red y 0 ball abs 1 0
128 127 54 83 79 126 lelttrd y 0 ball abs 1 0 < y + 1 2
129 127 83 128 ltled y 0 ball abs 1 0 y + 1 2
130 83 129 absidd y 0 ball abs 1 y + 1 2 = y + 1 2
131 44 105 mp1i y 0 ball abs 1 m 0 if m = 0 0 1 m : 0
132 83 recnd y 0 ball abs 1 y + 1 2
133 oveq1 x = y + 1 2 x j = y + 1 2 j
134 133 oveq2d x = y + 1 2 if j = 0 0 1 j x j = if j = 0 0 1 j y + 1 2 j
135 134 mpteq2dv x = y + 1 2 j 0 if j = 0 0 1 j x j = j 0 if j = 0 0 1 j y + 1 2 j
136 111 mptex j 0 if j = 0 0 1 j y + 1 2 j V
137 135 110 136 fvmpt y + 1 2 x j 0 if j = 0 0 1 j x j y + 1 2 = j 0 if j = 0 0 1 j y + 1 2 j
138 132 137 syl y 0 ball abs 1 x j 0 if j = 0 0 1 j x j y + 1 2 = j 0 if j = 0 0 1 j y + 1 2 j
139 138 seqeq3d y 0 ball abs 1 seq 0 + x j 0 if j = 0 0 1 j x j y + 1 2 = seq 0 + j 0 if j = 0 0 1 j y + 1 2 j
140 avglt2 y 1 y < 1 y + 1 2 < 1
141 54 123 140 sylancl y 0 ball abs 1 y < 1 y + 1 2 < 1
142 64 141 mpbid y 0 ball abs 1 y + 1 2 < 1
143 130 142 eqbrtrd y 0 ball abs 1 y + 1 2 < 1
144 logtayllem y + 1 2 y + 1 2 < 1 seq 0 + j 0 if j = 0 0 1 j y + 1 2 j dom
145 132 143 144 syl2anc y 0 ball abs 1 seq 0 + j 0 if j = 0 0 1 j y + 1 2 j dom
146 139 145 eqeltrd y 0 ball abs 1 seq 0 + x j 0 if j = 0 0 1 j x j y + 1 2 dom
147 97 131 119 132 146 radcnvle y 0 ball abs 1 y + 1 2 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
148 130 147 eqbrtrrd y 0 ball abs 1 y + 1 2 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
149 80 84 122 126 148 xrltletrd y 0 ball abs 1 y < sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
150 0re 0
151 elico2 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < * y 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < y 0 y y < sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
152 150 122 151 sylancr y 0 ball abs 1 y 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < y 0 y y < sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
153 54 79 149 152 mpbir3and y 0 ball abs 1 y 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
154 absf abs :
155 ffn abs : abs Fn
156 elpreima abs Fn y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < y y 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
157 154 155 156 mp2b y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < y y 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
158 51 153 157 sylanbrc y 0 ball abs 1 y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
159 cnvimass abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < dom abs
160 154 fdmi dom abs =
161 159 160 sseqtri abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
162 161 sseli y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < y
163 oveq1 x = y x j = y j
164 163 oveq2d x = y if j = 0 0 1 j x j = if j = 0 0 1 j y j
165 164 mpteq2dv x = y j 0 if j = 0 0 1 j x j = j 0 if j = 0 0 1 j y j
166 111 mptex j 0 if j = 0 0 1 j y j V
167 165 110 166 fvmpt y x j 0 if j = 0 0 1 j x j y = j 0 if j = 0 0 1 j y j
168 167 adantr y n 0 x j 0 if j = 0 0 1 j x j y = j 0 if j = 0 0 1 j y j
169 168 fveq1d y n 0 x j 0 if j = 0 0 1 j x j y n = j 0 if j = 0 0 1 j y j n
170 eqeq1 j = n j = 0 n = 0
171 oveq2 j = n 1 j = 1 n
172 170 171 ifbieq2d j = n if j = 0 0 1 j = if n = 0 0 1 n
173 oveq2 j = n y j = y n
174 172 173 oveq12d j = n if j = 0 0 1 j y j = if n = 0 0 1 n y n
175 eqid j 0 if j = 0 0 1 j y j = j 0 if j = 0 0 1 j y j
176 ovex if n = 0 0 1 n y n V
177 174 175 176 fvmpt n 0 j 0 if j = 0 0 1 j y j n = if n = 0 0 1 n y n
178 177 adantl y n 0 j 0 if j = 0 0 1 j y j n = if n = 0 0 1 n y n
179 169 178 eqtr2d y n 0 if n = 0 0 1 n y n = x j 0 if j = 0 0 1 j x j y n
180 179 sumeq2dv y n 0 if n = 0 0 1 n y n = n 0 x j 0 if j = 0 0 1 j x j y n
181 162 180 syl y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n = n 0 x j 0 if j = 0 0 1 j x j y n
182 181 mpteq2ia y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n = y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 x j 0 if j = 0 0 1 j x j y n
183 eqid abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < = abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
184 eqid if sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < z + sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < 2 z + 1 = if sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < z + sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < 2 z + 1
185 97 182 105 119 183 184 psercn y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n : abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < cn
186 cncff y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n : abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < cn y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n : abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
187 185 186 syl y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n : abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
188 187 fvmptelrn y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n
189 158 188 sylan2 y 0 ball abs 1 n 0 if n = 0 0 1 n y n
190 189 fmpttd y 0 ball abs 1 n 0 if n = 0 0 1 n y n : 0 ball abs 1
191 cnelprrecn
192 191 a1i
193 75 adantl y 0 ball abs 1 log 1 y
194 ovexd y 0 ball abs 1 1 1 y -1 V
195 29 cnmetdval 1 1 y 1 abs 1 y = 1 1 y
196 48 53 195 sylancr y 0 ball abs 1 1 abs 1 y = 1 1 y
197 nncan 1 y 1 1 y = y
198 48 51 197 sylancr y 0 ball abs 1 1 1 y = y
199 198 fveq2d y 0 ball abs 1 1 1 y = y
200 196 199 eqtrd y 0 ball abs 1 1 abs 1 y = y
201 200 64 eqbrtrd y 0 ball abs 1 1 abs 1 y < 1
202 elbl abs ∞Met 1 1 * 1 y 1 ball abs 1 1 y 1 abs 1 y < 1
203 38 48 39 202 mp3an 1 y 1 ball abs 1 1 y 1 abs 1 y < 1
204 53 201 203 sylanbrc y 0 ball abs 1 1 y 1 ball abs 1
205 204 adantl y 0 ball abs 1 1 y 1 ball abs 1
206 neg1cn 1
207 206 a1i y 0 ball abs 1 1
208 eqid 1 ball abs 1 = 1 ball abs 1
209 208 dvlog2lem 1 ball abs 1 −∞ 0
210 209 sseli x 1 ball abs 1 x −∞ 0
211 210 eldifad x 1 ball abs 1 x
212 eqid −∞ 0 = −∞ 0
213 212 logdmn0 x −∞ 0 x 0
214 210 213 syl x 1 ball abs 1 x 0
215 211 214 logcld x 1 ball abs 1 log x
216 215 adantl x 1 ball abs 1 log x
217 ovexd x 1 ball abs 1 1 x V
218 simpr y y
219 48 218 52 sylancr y 1 y
220 206 a1i y 1
221 1cnd y 1
222 0cnd y 0
223 1cnd 1
224 192 223 dvmptc dy 1 d y = y 0
225 192 dvmptid dy y d y = y 1
226 192 221 222 224 218 221 225 dvmptsub dy 1 y d y = y 0 1
227 df-neg 1 = 0 1
228 227 mpteq2i y 1 = y 0 1
229 226 228 eqtr4di dy 1 y d y = y 1
230 50 a1i 0 ball abs 1
231 eqid TopOpen fld = TopOpen fld
232 231 cnfldtopon TopOpen fld TopOn
233 232 toponrestid TopOpen fld = TopOpen fld 𝑡
234 231 cnfldtopn TopOpen fld = MetOpen abs
235 234 blopn abs ∞Met 0 1 * 0 ball abs 1 TopOpen fld
236 38 28 39 235 mp3an 0 ball abs 1 TopOpen fld
237 236 a1i 0 ball abs 1 TopOpen fld
238 192 219 220 229 230 233 231 237 dvmptres dy 0 ball abs 1 1 y d y = y 0 ball abs 1 1
239 logf1o log : 0 1-1 onto ran log
240 f1of log : 0 1-1 onto ran log log : 0 ran log
241 239 240 ax-mp log : 0 ran log
242 212 logdmss −∞ 0 0
243 209 242 sstri 1 ball abs 1 0
244 fssres log : 0 ran log 1 ball abs 1 0 log 1 ball abs 1 : 1 ball abs 1 ran log
245 241 243 244 mp2an log 1 ball abs 1 : 1 ball abs 1 ran log
246 245 a1i log 1 ball abs 1 : 1 ball abs 1 ran log
247 246 feqmptd log 1 ball abs 1 = x 1 ball abs 1 log 1 ball abs 1 x
248 fvres x 1 ball abs 1 log 1 ball abs 1 x = log x
249 248 mpteq2ia x 1 ball abs 1 log 1 ball abs 1 x = x 1 ball abs 1 log x
250 247 249 eqtrdi log 1 ball abs 1 = x 1 ball abs 1 log x
251 250 oveq2d D log 1 ball abs 1 = dx 1 ball abs 1 log x d x
252 208 dvlog2 D log 1 ball abs 1 = x 1 ball abs 1 1 x
253 251 252 eqtr3di dx 1 ball abs 1 log x d x = x 1 ball abs 1 1 x
254 fveq2 x = 1 y log x = log 1 y
255 oveq2 x = 1 y 1 x = 1 1 y
256 192 192 205 207 216 217 238 253 254 255 dvmptco dy 0 ball abs 1 log 1 y d y = y 0 ball abs 1 1 1 y -1
257 192 193 194 256 dvmptneg dy 0 ball abs 1 log 1 y d y = y 0 ball abs 1 1 1 y -1
258 53 74 reccld y 0 ball abs 1 1 1 y
259 mulcom 1 1 y 1 1 1 y -1 = -1 1 1 y
260 258 206 259 sylancl y 0 ball abs 1 1 1 y -1 = -1 1 1 y
261 258 mulm1d y 0 ball abs 1 -1 1 1 y = 1 1 y
262 260 261 eqtrd y 0 ball abs 1 1 1 y -1 = 1 1 y
263 262 negeqd y 0 ball abs 1 1 1 y -1 = 1 1 y
264 258 negnegd y 0 ball abs 1 1 1 y = 1 1 y
265 263 264 eqtrd y 0 ball abs 1 1 1 y -1 = 1 1 y
266 265 mpteq2ia y 0 ball abs 1 1 1 y -1 = y 0 ball abs 1 1 1 y
267 257 266 eqtrdi dy 0 ball abs 1 log 1 y d y = y 0 ball abs 1 1 1 y
268 267 dmeqd dom dy 0 ball abs 1 log 1 y d y = dom y 0 ball abs 1 1 1 y
269 dmmptg y 0 ball abs 1 1 1 y V dom y 0 ball abs 1 1 1 y = 0 ball abs 1
270 ovexd y 0 ball abs 1 1 1 y V
271 269 270 mprg dom y 0 ball abs 1 1 1 y = 0 ball abs 1
272 268 271 eqtrdi dom dy 0 ball abs 1 log 1 y d y = 0 ball abs 1
273 sumex n n m 0 if m = 0 0 1 m n y n 1 V
274 273 a1i y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n n m 0 if m = 0 0 1 m n y n 1 V
275 fveq2 n = k x j 0 if j = 0 0 1 j x j y n = x j 0 if j = 0 0 1 j x j y k
276 275 cbvsumv n 0 x j 0 if j = 0 0 1 j x j y n = k 0 x j 0 if j = 0 0 1 j x j y k
277 181 276 eqtrdi y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n = k 0 x j 0 if j = 0 0 1 j x j y k
278 277 mpteq2ia y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n = y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < k 0 x j 0 if j = 0 0 1 j x j y k
279 eqid 0 ball abs z + if sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < z + sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < 2 z + 1 2 = 0 ball abs z + if sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < z + sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < 2 z + 1 2
280 97 278 105 119 183 184 279 pserdv2 dy abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n 0 if n = 0 0 1 n y n d y = y abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * < n n m 0 if m = 0 0 1 m n y n 1
281 158 ssriv 0 ball abs 1 abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
282 281 a1i 0 ball abs 1 abs -1 0 sup r | seq 0 + j 0 if j = 0 0 1 j r j dom * <
283 192 188 274 280 282 233 231 237 dvmptres dy 0 ball abs 1 n 0 if n = 0 0 1 n y n d y = y 0 ball abs 1 n n m 0 if m = 0 0 1 m n y n 1
284 nnnn0 n n 0
285 284 adantl y 0 ball abs 1 n n 0
286 eqeq1 m = n m = 0 n = 0
287 oveq2 m = n 1 m = 1 n
288 286 287 ifbieq2d m = n if m = 0 0 1 m = if n = 0 0 1 n
289 ovex 1 n V
290 90 289 ifex if n = 0 0 1 n V
291 288 89 290 fvmpt n 0 m 0 if m = 0 0 1 m n = if n = 0 0 1 n
292 285 291 syl y 0 ball abs 1 n m 0 if m = 0 0 1 m n = if n = 0 0 1 n
293 nnne0 n n 0
294 293 adantl y 0 ball abs 1 n n 0
295 294 neneqd y 0 ball abs 1 n ¬ n = 0
296 295 iffalsed y 0 ball abs 1 n if n = 0 0 1 n = 1 n
297 292 296 eqtrd y 0 ball abs 1 n m 0 if m = 0 0 1 m n = 1 n
298 297 oveq2d y 0 ball abs 1 n n m 0 if m = 0 0 1 m n = n 1 n
299 nncn n n
300 299 adantl y 0 ball abs 1 n n
301 300 294 recidd y 0 ball abs 1 n n 1 n = 1
302 298 301 eqtrd y 0 ball abs 1 n n m 0 if m = 0 0 1 m n = 1
303 302 oveq1d y 0 ball abs 1 n n m 0 if m = 0 0 1 m n y n 1 = 1 y n 1
304 nnm1nn0 n n 1 0
305 expcl y n 1 0 y n 1
306 51 304 305 syl2an y 0 ball abs 1 n y n 1
307 306 mulid2d y 0 ball abs 1 n 1 y n 1 = y n 1
308 303 307 eqtrd y 0 ball abs 1 n n m 0 if m = 0 0 1 m n y n 1 = y n 1
309 308 sumeq2dv y 0 ball abs 1 n n m 0 if m = 0 0 1 m n y n 1 = n y n 1
310 nnuz = 1
311 1e0p1 1 = 0 + 1
312 311 fveq2i 1 = 0 + 1
313 310 312 eqtri = 0 + 1
314 oveq1 n = 1 + m n 1 = 1 + m - 1
315 314 oveq2d n = 1 + m y n 1 = y 1 + m - 1
316 1zzd y 0 ball abs 1 1
317 0zd y 0 ball abs 1 0
318 1 313 315 316 317 306 isumshft y 0 ball abs 1 n y n 1 = m 0 y 1 + m - 1
319 pncan2 1 m 1 + m - 1 = m
320 48 99 319 sylancr m 0 1 + m - 1 = m
321 320 oveq2d m 0 y 1 + m - 1 = y m
322 321 sumeq2i m 0 y 1 + m - 1 = m 0 y m
323 318 322 eqtrdi y 0 ball abs 1 n y n 1 = m 0 y m
324 geoisum y y < 1 m 0 y m = 1 1 y
325 51 64 324 syl2anc y 0 ball abs 1 m 0 y m = 1 1 y
326 309 323 325 3eqtrd y 0 ball abs 1 n n m 0 if m = 0 0 1 m n y n 1 = 1 1 y
327 326 mpteq2ia y 0 ball abs 1 n n m 0 if m = 0 0 1 m n y n 1 = y 0 ball abs 1 1 1 y
328 283 327 eqtrdi dy 0 ball abs 1 n 0 if n = 0 0 1 n y n d y = y 0 ball abs 1 1 1 y
329 267 328 eqtr4d dy 0 ball abs 1 log 1 y d y = dy 0 ball abs 1 n 0 if n = 0 0 1 n y n d y
330 1rp 1 +
331 blcntr abs ∞Met 0 1 + 0 0 ball abs 1
332 38 28 330 331 mp3an 0 0 ball abs 1
333 332 a1i 0 0 ball abs 1
334 oveq2 y = 0 1 y = 1 0
335 1m0e1 1 0 = 1
336 334 335 eqtrdi y = 0 1 y = 1
337 336 fveq2d y = 0 log 1 y = log 1
338 log1 log 1 = 0
339 337 338 eqtrdi y = 0 log 1 y = 0
340 339 negeqd y = 0 log 1 y = 0
341 neg0 0 = 0
342 340 341 eqtrdi y = 0 log 1 y = 0
343 eqid y 0 ball abs 1 log 1 y = y 0 ball abs 1 log 1 y
344 342 343 90 fvmpt 0 0 ball abs 1 y 0 ball abs 1 log 1 y 0 = 0
345 332 344 mp1i y 0 ball abs 1 log 1 y 0 = 0
346 oveq1 0 = if n = 0 0 1 n 0 y n = if n = 0 0 1 n y n
347 346 eqeq1d 0 = if n = 0 0 1 n 0 y n = 0 if n = 0 0 1 n y n = 0
348 oveq1 1 n = if n = 0 0 1 n 1 n y n = if n = 0 0 1 n y n
349 348 eqeq1d 1 n = if n = 0 0 1 n 1 n y n = 0 if n = 0 0 1 n y n = 0
350 simpll y = 0 n 0 n = 0 y = 0
351 350 28 eqeltrdi y = 0 n 0 n = 0 y
352 simplr y = 0 n 0 n = 0 n 0
353 351 352 expcld y = 0 n 0 n = 0 y n
354 353 mul02d y = 0 n 0 n = 0 0 y n = 0
355 simpll y = 0 n 0 ¬ n = 0 y = 0
356 355 oveq1d y = 0 n 0 ¬ n = 0 y n = 0 n
357 simpr y = 0 n 0 n 0
358 357 14 sylib y = 0 n 0 n n = 0
359 358 ord y = 0 n 0 ¬ n n = 0
360 359 con1d y = 0 n 0 ¬ n = 0 n
361 360 imp y = 0 n 0 ¬ n = 0 n
362 361 0expd y = 0 n 0 ¬ n = 0 0 n = 0
363 356 362 eqtrd y = 0 n 0 ¬ n = 0 y n = 0
364 363 oveq2d y = 0 n 0 ¬ n = 0 1 n y n = 1 n 0
365 361 nnrecred y = 0 n 0 ¬ n = 0 1 n
366 365 recnd y = 0 n 0 ¬ n = 0 1 n
367 366 mul01d y = 0 n 0 ¬ n = 0 1 n 0 = 0
368 364 367 eqtrd y = 0 n 0 ¬ n = 0 1 n y n = 0
369 347 349 354 368 ifbothda y = 0 n 0 if n = 0 0 1 n y n = 0
370 369 sumeq2dv y = 0 n 0 if n = 0 0 1 n y n = n 0 0
371 1 eqimssi 0 0
372 371 orci 0 0 0 Fin
373 sumz 0 0 0 Fin n 0 0 = 0
374 372 373 ax-mp n 0 0 = 0
375 370 374 eqtrdi y = 0 n 0 if n = 0 0 1 n y n = 0
376 eqid y 0 ball abs 1 n 0 if n = 0 0 1 n y n = y 0 ball abs 1 n 0 if n = 0 0 1 n y n
377 375 376 90 fvmpt 0 0 ball abs 1 y 0 ball abs 1 n 0 if n = 0 0 1 n y n 0 = 0
378 332 377 mp1i y 0 ball abs 1 n 0 if n = 0 0 1 n y n 0 = 0
379 345 378 eqtr4d y 0 ball abs 1 log 1 y 0 = y 0 ball abs 1 n 0 if n = 0 0 1 n y n 0
380 45 46 47 78 190 272 329 333 379 dv11cn y 0 ball abs 1 log 1 y = y 0 ball abs 1 n 0 if n = 0 0 1 n y n
381 380 fveq1d y 0 ball abs 1 log 1 y A = y 0 ball abs 1 n 0 if n = 0 0 1 n y n A
382 44 381 mp1i A 0 ball abs 1 y 0 ball abs 1 log 1 y A = y 0 ball abs 1 n 0 if n = 0 0 1 n y n A
383 oveq2 y = A 1 y = 1 A
384 383 fveq2d y = A log 1 y = log 1 A
385 384 negeqd y = A log 1 y = log 1 A
386 negex log 1 A V
387 385 343 386 fvmpt A 0 ball abs 1 y 0 ball abs 1 log 1 y A = log 1 A
388 oveq1 y = A y n = A n
389 388 oveq2d y = A if n = 0 0 1 n y n = if n = 0 0 1 n A n
390 389 sumeq2sdv y = A n 0 if n = 0 0 1 n y n = n 0 if n = 0 0 1 n A n
391 sumex n 0 if n = 0 0 1 n A n V
392 390 376 391 fvmpt A 0 ball abs 1 y 0 ball abs 1 n 0 if n = 0 0 1 n y n A = n 0 if n = 0 0 1 n A n
393 382 387 392 3eqtr3d A 0 ball abs 1 log 1 A = n 0 if n = 0 0 1 n A n
394 43 393 syl A A < 1 log 1 A = n 0 if n = 0 0 1 n A n
395 26 394 breqtrrd A A < 1 seq 0 + k 0 if k = 0 0 1 k A k log 1 A
396 seqex seq 0 + k 0 if k = 0 0 1 k A k V
397 396 a1i A A < 1 seq 0 + k 0 if k = 0 0 1 k A k V
398 seqex seq 1 + k A k k V
399 398 a1i A A < 1 seq 1 + k A k k V
400 1zzd A A < 1 1
401 elnnuz n n 1
402 fvres n 1 seq 0 + k 0 if k = 0 0 1 k A k 1 n = seq 0 + k 0 if k = 0 0 1 k A k n
403 401 402 sylbi n seq 0 + k 0 if k = 0 0 1 k A k 1 n = seq 0 + k 0 if k = 0 0 1 k A k n
404 403 eqcomd n seq 0 + k 0 if k = 0 0 1 k A k n = seq 0 + k 0 if k = 0 0 1 k A k 1 n
405 addid2 n 0 + n = n
406 405 adantl A A < 1 n 0 + n = n
407 0cnd A A < 1 0
408 1eluzge0 1 0
409 408 a1i A A < 1 1 0
410 0cnd A A < 1 k 0 k = 0 0
411 nn0cn k 0 k
412 411 adantl A A < 1 k 0 k
413 neqne ¬ k = 0 k 0
414 reccl k k 0 1 k
415 412 413 414 syl2an A A < 1 k 0 ¬ k = 0 1 k
416 410 415 ifclda A A < 1 k 0 if k = 0 0 1 k
417 expcl A k 0 A k
418 417 adantlr A A < 1 k 0 A k
419 416 418 mulcld A A < 1 k 0 if k = 0 0 1 k A k
420 419 fmpttd A A < 1 k 0 if k = 0 0 1 k A k : 0
421 1nn0 1 0
422 ffvelrn k 0 if k = 0 0 1 k A k : 0 1 0 k 0 if k = 0 0 1 k A k 1
423 420 421 422 sylancl A A < 1 k 0 if k = 0 0 1 k A k 1
424 elfz1eq n 0 0 n = 0
425 1m1e0 1 1 = 0
426 425 oveq2i 0 1 1 = 0 0
427 424 426 eleq2s n 0 1 1 n = 0
428 427 fveq2d n 0 1 1 k 0 if k = 0 0 1 k A k n = k 0 if k = 0 0 1 k A k 0
429 0nn0 0 0
430 iftrue k = 0 if k = 0 0 1 k = 0
431 oveq2 k = 0 A k = A 0
432 430 431 oveq12d k = 0 if k = 0 0 1 k A k = 0 A 0
433 ovex 0 A 0 V
434 432 8 433 fvmpt 0 0 k 0 if k = 0 0 1 k A k 0 = 0 A 0
435 429 434 ax-mp k 0 if k = 0 0 1 k A k 0 = 0 A 0
436 expcl A 0 0 A 0
437 27 429 436 sylancl A A < 1 A 0
438 437 mul02d A A < 1 0 A 0 = 0
439 435 438 eqtrid A A < 1 k 0 if k = 0 0 1 k A k 0 = 0
440 428 439 sylan9eqr A A < 1 n 0 1 1 k 0 if k = 0 0 1 k A k n = 0
441 406 407 409 423 440 seqid A A < 1 seq 0 + k 0 if k = 0 0 1 k A k 1 = seq 1 + k 0 if k = 0 0 1 k A k
442 293 adantl A A < 1 n n 0
443 442 neneqd A A < 1 n ¬ n = 0
444 443 iffalsed A A < 1 n if n = 0 0 1 n = 1 n
445 444 oveq1d A A < 1 n if n = 0 0 1 n A n = 1 n A n
446 284 23 sylan2 A A < 1 n A n
447 299 adantl A A < 1 n n
448 446 447 442 divrec2d A A < 1 n A n n = 1 n A n
449 445 448 eqtr4d A A < 1 n if n = 0 0 1 n A n = A n n
450 284 11 sylan2 A A < 1 n k 0 if k = 0 0 1 k A k n = if n = 0 0 1 n A n
451 id k = n k = n
452 6 451 oveq12d k = n A k k = A n n
453 eqid k A k k = k A k k
454 ovex A n n V
455 452 453 454 fvmpt n k A k k n = A n n
456 455 adantl A A < 1 n k A k k n = A n n
457 449 450 456 3eqtr4d A A < 1 n k 0 if k = 0 0 1 k A k n = k A k k n
458 401 457 sylan2br A A < 1 n 1 k 0 if k = 0 0 1 k A k n = k A k k n
459 400 458 seqfeq A A < 1 seq 1 + k 0 if k = 0 0 1 k A k = seq 1 + k A k k
460 441 459 eqtrd A A < 1 seq 0 + k 0 if k = 0 0 1 k A k 1 = seq 1 + k A k k
461 460 fveq1d A A < 1 seq 0 + k 0 if k = 0 0 1 k A k 1 n = seq 1 + k A k k n
462 404 461 sylan9eqr A A < 1 n seq 0 + k 0 if k = 0 0 1 k A k n = seq 1 + k A k k n
463 310 397 399 400 462 climeq A A < 1 seq 0 + k 0 if k = 0 0 1 k A k log 1 A seq 1 + k A k k log 1 A
464 395 463 mpbid A A < 1 seq 1 + k A k k log 1 A