Metamath Proof Explorer


Theorem logtaylsum

Description: The Taylor series for -u log ( 1 - A ) , as an infinite sum. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion logtaylsum AA<1kAkk=log1A

Proof

Step Hyp Ref Expression
1 nnuz =1
2 1zzd AA<11
3 oveq2 n=kAn=Ak
4 id n=kn=k
5 3 4 oveq12d n=kAnn=Akk
6 eqid nAnn=nAnn
7 ovex AkkV
8 5 6 7 fvmpt knAnnk=Akk
9 8 adantl AA<1knAnnk=Akk
10 simpl AA<1A
11 nnnn0 kk0
12 expcl Ak0Ak
13 10 11 12 syl2an AA<1kAk
14 nncn kk
15 14 adantl AA<1kk
16 nnne0 kk0
17 16 adantl AA<1kk0
18 13 15 17 divcld AA<1kAkk
19 logtayl AA<1seq1+nAnnlog1A
20 1 2 9 18 19 isumclim AA<1kAkk=log1A