Metamath Proof Explorer


Theorem psercn

Description: An infinite series converges to a continuous function on the open disk of radius R , where R is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015)

Ref Expression
Hypotheses pserf.g G=xn0Anxn
pserf.f F=ySj0Gyj
pserf.a φA:0
pserf.r R=supr|seq0+Grdom*<
psercn.s S=abs-10R
psercn.m M=ifRa+R2a+1
Assertion psercn φF:Scn

Proof

Step Hyp Ref Expression
1 pserf.g G=xn0Anxn
2 pserf.f F=ySj0Gyj
3 pserf.a φA:0
4 pserf.r R=supr|seq0+Grdom*<
5 psercn.s S=abs-10R
6 psercn.m M=ifRa+R2a+1
7 sumex j0GyjV
8 7 rgenw ySj0GyjV
9 2 fnmpt ySj0GyjVFFnS
10 8 9 mp1i φFFnS
11 cnvimass abs-10Rdomabs
12 absf abs:
13 12 fdmi domabs=
14 11 13 sseqtri abs-10R
15 5 14 eqsstri S
16 15 a1i φS
17 16 sselda φaSa
18 0cn 0
19 eqid abs=abs
20 19 cnmetdval 0a0absa=0a
21 18 17 20 sylancr φaS0absa=0a
22 abssub 0a0a=a0
23 18 17 22 sylancr φaS0a=a0
24 17 subid1d φaSa0=a
25 24 fveq2d φaSa0=a
26 21 23 25 3eqtrd φaS0absa=a
27 breq2 a+R2=ifRa+R2a+1a<a+R2a<ifRa+R2a+1
28 breq2 a+1=ifRa+R2a+1a<a+1a<ifRa+R2a+1
29 simpr φaSaS
30 29 5 eleqtrdi φaSaabs-10R
31 ffn abs:absFn
32 elpreima absFnaabs-10Raa0R
33 12 31 32 mp2b aabs-10Raa0R
34 30 33 sylib φaSaa0R
35 34 simprd φaSa0R
36 0re 0
37 iccssxr 0+∞*
38 1 3 4 radcnvcl φR0+∞
39 38 adantr φaSR0+∞
40 37 39 sselid φaSR*
41 elico2 0R*a0Ra0aa<R
42 36 40 41 sylancr φaSa0Ra0aa<R
43 35 42 mpbid φaSa0aa<R
44 43 simp3d φaSa<R
45 44 adantr φaSRa<R
46 17 abscld φaSa
47 avglt1 aRa<Ra<a+R2
48 46 47 sylan φaSRa<Ra<a+R2
49 45 48 mpbid φaSRa<a+R2
50 46 ltp1d φaSa<a+1
51 50 adantr φaS¬Ra<a+1
52 27 28 49 51 ifbothda φaSa<ifRa+R2a+1
53 52 6 breqtrrdi φaSa<M
54 26 53 eqbrtrd φaS0absa<M
55 cnxmet abs∞Met
56 1 2 3 4 5 6 psercnlem1 φaSM+a<MM<R
57 56 simp1d φaSM+
58 57 rpxrd φaSM*
59 elbl abs∞Met0M*a0ballabsMa0absa<M
60 55 18 58 59 mp3an12i φaSa0ballabsMa0absa<M
61 17 54 60 mpbir2and φaSa0ballabsM
62 61 fvresd φaSF0ballabsMa=Fa
63 2 reseq1i F0ballabsM=ySj0Gyj0ballabsM
64 1 2 3 4 5 56 psercnlem2 φaSa0ballabsM0ballabsMabs-10Mabs-10MS
65 64 simp2d φaS0ballabsMabs-10M
66 64 simp3d φaSabs-10MS
67 65 66 sstrd φaS0ballabsMS
68 67 resmptd φaSySj0Gyj0ballabsM=y0ballabsMj0Gyj
69 63 68 eqtrid φaSF0ballabsM=y0ballabsMj0Gyj
70 eqid y0ballabsMj0Gyj=y0ballabsMj0Gyj
71 3 adantr φaSA:0
72 fveq2 k=yGk=Gy
73 72 seqeq3d k=yseq0+Gk=seq0+Gy
74 73 fveq1d k=yseq0+Gks=seq0+Gys
75 74 cbvmptv k0ballabsMseq0+Gks=y0ballabsMseq0+Gys
76 fveq2 s=iseq0+Gys=seq0+Gyi
77 76 mpteq2dv s=iy0ballabsMseq0+Gys=y0ballabsMseq0+Gyi
78 75 77 eqtrid s=ik0ballabsMseq0+Gks=y0ballabsMseq0+Gyi
79 78 cbvmptv s0k0ballabsMseq0+Gks=i0y0ballabsMseq0+Gyi
80 57 rpred φaSM
81 56 simp3d φaSM<R
82 1 70 71 4 79 80 81 65 psercn2 φaSy0ballabsMj0Gyj:0ballabsMcn
83 69 82 eqeltrd φaSF0ballabsM:0ballabsMcn
84 cncff F0ballabsM:0ballabsMcnF0ballabsM:0ballabsM
85 83 84 syl φaSF0ballabsM:0ballabsM
86 85 61 ffvelcdmd φaSF0ballabsMa
87 62 86 eqeltrrd φaSFa
88 87 ralrimiva φaSFa
89 ffnfv F:SFFnSaSFa
90 10 88 89 sylanbrc φF:S
91 67 15 sstrdi φaS0ballabsM
92 ssid
93 eqid TopOpenfld=TopOpenfld
94 eqid TopOpenfld𝑡0ballabsM=TopOpenfld𝑡0ballabsM
95 93 cnfldtopon TopOpenfldTopOn
96 95 toponrestid TopOpenfld=TopOpenfld𝑡
97 93 94 96 cncfcn 0ballabsM0ballabsMcn=TopOpenfld𝑡0ballabsMCnTopOpenfld
98 91 92 97 sylancl φaS0ballabsMcn=TopOpenfld𝑡0ballabsMCnTopOpenfld
99 83 98 eleqtrd φaSF0ballabsMTopOpenfld𝑡0ballabsMCnTopOpenfld
100 93 cnfldtop TopOpenfldTop
101 unicntop =TopOpenfld
102 101 restuni TopOpenfldTop0ballabsM0ballabsM=TopOpenfld𝑡0ballabsM
103 100 91 102 sylancr φaS0ballabsM=TopOpenfld𝑡0ballabsM
104 61 103 eleqtrd φaSaTopOpenfld𝑡0ballabsM
105 eqid TopOpenfld𝑡0ballabsM=TopOpenfld𝑡0ballabsM
106 105 cncnpi F0ballabsMTopOpenfld𝑡0ballabsMCnTopOpenfldaTopOpenfld𝑡0ballabsMF0ballabsMTopOpenfld𝑡0ballabsMCnPTopOpenflda
107 99 104 106 syl2anc φaSF0ballabsMTopOpenfld𝑡0ballabsMCnPTopOpenflda
108 cnex V
109 108 15 ssexi SV
110 109 a1i φaSSV
111 restabs TopOpenfldTop0ballabsMSSVTopOpenfld𝑡S𝑡0ballabsM=TopOpenfld𝑡0ballabsM
112 100 67 110 111 mp3an2i φaSTopOpenfld𝑡S𝑡0ballabsM=TopOpenfld𝑡0ballabsM
113 112 oveq1d φaSTopOpenfld𝑡S𝑡0ballabsMCnPTopOpenfld=TopOpenfld𝑡0ballabsMCnPTopOpenfld
114 113 fveq1d φaSTopOpenfld𝑡S𝑡0ballabsMCnPTopOpenflda=TopOpenfld𝑡0ballabsMCnPTopOpenflda
115 107 114 eleqtrrd φaSF0ballabsMTopOpenfld𝑡S𝑡0ballabsMCnPTopOpenflda
116 resttop TopOpenfldTopSVTopOpenfld𝑡STop
117 100 109 116 mp2an TopOpenfld𝑡STop
118 117 a1i φaSTopOpenfld𝑡STop
119 df-ss 0ballabsMS0ballabsMS=0ballabsM
120 67 119 sylib φaS0ballabsMS=0ballabsM
121 93 cnfldtopn TopOpenfld=MetOpenabs
122 121 blopn abs∞Met0M*0ballabsMTopOpenfld
123 55 18 58 122 mp3an12i φaS0ballabsMTopOpenfld
124 elrestr TopOpenfldTopSV0ballabsMTopOpenfld0ballabsMSTopOpenfld𝑡S
125 100 109 123 124 mp3an12i φaS0ballabsMSTopOpenfld𝑡S
126 120 125 eqeltrrd φaS0ballabsMTopOpenfld𝑡S
127 isopn3i TopOpenfld𝑡STop0ballabsMTopOpenfld𝑡SintTopOpenfld𝑡S0ballabsM=0ballabsM
128 117 126 127 sylancr φaSintTopOpenfld𝑡S0ballabsM=0ballabsM
129 61 128 eleqtrrd φaSaintTopOpenfld𝑡S0ballabsM
130 90 adantr φaSF:S
131 101 restuni TopOpenfldTopSS=TopOpenfld𝑡S
132 100 15 131 mp2an S=TopOpenfld𝑡S
133 132 101 cnprest TopOpenfld𝑡STop0ballabsMSaintTopOpenfld𝑡S0ballabsMF:SFTopOpenfld𝑡SCnPTopOpenfldaF0ballabsMTopOpenfld𝑡S𝑡0ballabsMCnPTopOpenflda
134 118 67 129 130 133 syl22anc φaSFTopOpenfld𝑡SCnPTopOpenfldaF0ballabsMTopOpenfld𝑡S𝑡0ballabsMCnPTopOpenflda
135 115 134 mpbird φaSFTopOpenfld𝑡SCnPTopOpenflda
136 135 ralrimiva φaSFTopOpenfld𝑡SCnPTopOpenflda
137 resttopon TopOpenfldTopOnSTopOpenfld𝑡STopOnS
138 95 15 137 mp2an TopOpenfld𝑡STopOnS
139 cncnp TopOpenfld𝑡STopOnSTopOpenfldTopOnFTopOpenfld𝑡SCnTopOpenfldF:SaSFTopOpenfld𝑡SCnPTopOpenflda
140 138 95 139 mp2an FTopOpenfld𝑡SCnTopOpenfldF:SaSFTopOpenfld𝑡SCnPTopOpenflda
141 90 136 140 sylanbrc φFTopOpenfld𝑡SCnTopOpenfld
142 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
143 93 142 96 cncfcn SScn=TopOpenfld𝑡SCnTopOpenfld
144 15 92 143 mp2an Scn=TopOpenfld𝑡SCnTopOpenfld
145 141 144 eleqtrrdi φF:Scn