Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
|
2 |
|
pserf.f |
|
3 |
|
pserf.a |
|
4 |
|
pserf.r |
|
5 |
|
psercn.s |
|
6 |
|
psercn.m |
|
7 |
|
cnvimass |
|
8 |
|
absf |
|
9 |
8
|
fdmi |
|
10 |
7 9
|
sseqtri |
|
11 |
5 10
|
eqsstri |
|
12 |
11
|
a1i |
|
13 |
12
|
sselda |
|
14 |
13
|
abscld |
|
15 |
|
readdcl |
|
16 |
14 15
|
sylan |
|
17 |
16
|
rehalfcld |
|
18 |
|
peano2re |
|
19 |
14 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
17 20
|
ifclda |
|
22 |
6 21
|
eqeltrid |
|
23 |
|
0re |
|
24 |
23
|
a1i |
|
25 |
13
|
absge0d |
|
26 |
|
breq2 |
|
27 |
|
breq2 |
|
28 |
|
simpr |
|
29 |
28 5
|
eleqtrdi |
|
30 |
|
ffn |
|
31 |
|
elpreima |
|
32 |
8 30 31
|
mp2b |
|
33 |
29 32
|
sylib |
|
34 |
33
|
simprd |
|
35 |
|
iccssxr |
|
36 |
1 3 4
|
radcnvcl |
|
37 |
36
|
adantr |
|
38 |
35 37
|
sselid |
|
39 |
|
elico2 |
|
40 |
23 38 39
|
sylancr |
|
41 |
34 40
|
mpbid |
|
42 |
41
|
simp3d |
|
43 |
42
|
adantr |
|
44 |
|
avglt1 |
|
45 |
14 44
|
sylan |
|
46 |
43 45
|
mpbid |
|
47 |
14
|
ltp1d |
|
48 |
47
|
adantr |
|
49 |
26 27 46 48
|
ifbothda |
|
50 |
49 6
|
breqtrrdi |
|
51 |
24 14 22 25 50
|
lelttrd |
|
52 |
22 51
|
elrpd |
|
53 |
|
breq1 |
|
54 |
|
breq1 |
|
55 |
|
avglt2 |
|
56 |
14 55
|
sylan |
|
57 |
43 56
|
mpbid |
|
58 |
19
|
rexrd |
|
59 |
38 58
|
xrlenltd |
|
60 |
|
0xr |
|
61 |
|
pnfxr |
|
62 |
|
elicc1 |
|
63 |
60 61 62
|
mp2an |
|
64 |
36 63
|
sylib |
|
65 |
64
|
simp2d |
|
66 |
65
|
adantr |
|
67 |
|
ge0gtmnf |
|
68 |
38 66 67
|
syl2anc |
|
69 |
|
xrre |
|
70 |
69
|
expr |
|
71 |
38 19 68 70
|
syl21anc |
|
72 |
59 71
|
sylbird |
|
73 |
72
|
con1d |
|
74 |
73
|
imp |
|
75 |
53 54 57 74
|
ifbothda |
|
76 |
6 75
|
eqbrtrid |
|
77 |
52 50 76
|
3jca |
|