Metamath Proof Explorer


Theorem psercnlem1

Description: Lemma for psercn . (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses pserf.g G=xn0Anxn
pserf.f F=ySj0Gyj
pserf.a φA:0
pserf.r R=supr|seq0+Grdom*<
psercn.s S=abs-10R
psercn.m M=ifRa+R2a+1
Assertion psercnlem1 φaSM+a<MM<R

Proof

Step Hyp Ref Expression
1 pserf.g G=xn0Anxn
2 pserf.f F=ySj0Gyj
3 pserf.a φA:0
4 pserf.r R=supr|seq0+Grdom*<
5 psercn.s S=abs-10R
6 psercn.m M=ifRa+R2a+1
7 cnvimass abs-10Rdomabs
8 absf abs:
9 8 fdmi domabs=
10 7 9 sseqtri abs-10R
11 5 10 eqsstri S
12 11 a1i φS
13 12 sselda φaSa
14 13 abscld φaSa
15 readdcl aRa+R
16 14 15 sylan φaSRa+R
17 16 rehalfcld φaSRa+R2
18 peano2re aa+1
19 14 18 syl φaSa+1
20 19 adantr φaS¬Ra+1
21 17 20 ifclda φaSifRa+R2a+1
22 6 21 eqeltrid φaSM
23 0re 0
24 23 a1i φaS0
25 13 absge0d φaS0a
26 breq2 a+R2=ifRa+R2a+1a<a+R2a<ifRa+R2a+1
27 breq2 a+1=ifRa+R2a+1a<a+1a<ifRa+R2a+1
28 simpr φaSaS
29 28 5 eleqtrdi φaSaabs-10R
30 ffn abs:absFn
31 elpreima absFnaabs-10Raa0R
32 8 30 31 mp2b aabs-10Raa0R
33 29 32 sylib φaSaa0R
34 33 simprd φaSa0R
35 iccssxr 0+∞*
36 1 3 4 radcnvcl φR0+∞
37 36 adantr φaSR0+∞
38 35 37 sselid φaSR*
39 elico2 0R*a0Ra0aa<R
40 23 38 39 sylancr φaSa0Ra0aa<R
41 34 40 mpbid φaSa0aa<R
42 41 simp3d φaSa<R
43 42 adantr φaSRa<R
44 avglt1 aRa<Ra<a+R2
45 14 44 sylan φaSRa<Ra<a+R2
46 43 45 mpbid φaSRa<a+R2
47 14 ltp1d φaSa<a+1
48 47 adantr φaS¬Ra<a+1
49 26 27 46 48 ifbothda φaSa<ifRa+R2a+1
50 49 6 breqtrrdi φaSa<M
51 24 14 22 25 50 lelttrd φaS0<M
52 22 51 elrpd φaSM+
53 breq1 a+R2=ifRa+R2a+1a+R2<RifRa+R2a+1<R
54 breq1 a+1=ifRa+R2a+1a+1<RifRa+R2a+1<R
55 avglt2 aRa<Ra+R2<R
56 14 55 sylan φaSRa<Ra+R2<R
57 43 56 mpbid φaSRa+R2<R
58 19 rexrd φaSa+1*
59 38 58 xrlenltd φaSRa+1¬a+1<R
60 0xr 0*
61 pnfxr +∞*
62 elicc1 0*+∞*R0+∞R*0RR+∞
63 60 61 62 mp2an R0+∞R*0RR+∞
64 36 63 sylib φR*0RR+∞
65 64 simp2d φ0R
66 65 adantr φaS0R
67 ge0gtmnf R*0R−∞<R
68 38 66 67 syl2anc φaS−∞<R
69 xrre R*a+1−∞<RRa+1R
70 69 expr R*a+1−∞<RRa+1R
71 38 19 68 70 syl21anc φaSRa+1R
72 59 71 sylbird φaS¬a+1<RR
73 72 con1d φaS¬Ra+1<R
74 73 imp φaS¬Ra+1<R
75 53 54 57 74 ifbothda φaSifRa+R2a+1<R
76 6 75 eqbrtrid φaSM<R
77 52 50 76 3jca φaSM+a<MM<R