| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pserf.g |
|
| 2 |
|
pserf.f |
|
| 3 |
|
pserf.a |
|
| 4 |
|
pserf.r |
|
| 5 |
|
psercn.s |
|
| 6 |
|
psercn.m |
|
| 7 |
|
cnvimass |
|
| 8 |
|
absf |
|
| 9 |
8
|
fdmi |
|
| 10 |
7 9
|
sseqtri |
|
| 11 |
5 10
|
eqsstri |
|
| 12 |
11
|
a1i |
|
| 13 |
12
|
sselda |
|
| 14 |
13
|
abscld |
|
| 15 |
|
readdcl |
|
| 16 |
14 15
|
sylan |
|
| 17 |
16
|
rehalfcld |
|
| 18 |
|
peano2re |
|
| 19 |
14 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
17 20
|
ifclda |
|
| 22 |
6 21
|
eqeltrid |
|
| 23 |
|
0re |
|
| 24 |
23
|
a1i |
|
| 25 |
13
|
absge0d |
|
| 26 |
|
breq2 |
|
| 27 |
|
breq2 |
|
| 28 |
|
simpr |
|
| 29 |
28 5
|
eleqtrdi |
|
| 30 |
|
ffn |
|
| 31 |
|
elpreima |
|
| 32 |
8 30 31
|
mp2b |
|
| 33 |
29 32
|
sylib |
|
| 34 |
33
|
simprd |
|
| 35 |
|
iccssxr |
|
| 36 |
1 3 4
|
radcnvcl |
|
| 37 |
36
|
adantr |
|
| 38 |
35 37
|
sselid |
|
| 39 |
|
elico2 |
|
| 40 |
23 38 39
|
sylancr |
|
| 41 |
34 40
|
mpbid |
|
| 42 |
41
|
simp3d |
|
| 43 |
42
|
adantr |
|
| 44 |
|
avglt1 |
|
| 45 |
14 44
|
sylan |
|
| 46 |
43 45
|
mpbid |
|
| 47 |
14
|
ltp1d |
|
| 48 |
47
|
adantr |
|
| 49 |
26 27 46 48
|
ifbothda |
|
| 50 |
49 6
|
breqtrrdi |
|
| 51 |
24 14 22 25 50
|
lelttrd |
|
| 52 |
22 51
|
elrpd |
|
| 53 |
|
breq1 |
|
| 54 |
|
breq1 |
|
| 55 |
|
avglt2 |
|
| 56 |
14 55
|
sylan |
|
| 57 |
43 56
|
mpbid |
|
| 58 |
19
|
rexrd |
|
| 59 |
38 58
|
xrlenltd |
|
| 60 |
|
0xr |
|
| 61 |
|
pnfxr |
|
| 62 |
|
elicc1 |
|
| 63 |
60 61 62
|
mp2an |
|
| 64 |
36 63
|
sylib |
|
| 65 |
64
|
simp2d |
|
| 66 |
65
|
adantr |
|
| 67 |
|
ge0gtmnf |
|
| 68 |
38 66 67
|
syl2anc |
|
| 69 |
|
xrre |
|
| 70 |
69
|
expr |
|
| 71 |
38 19 68 70
|
syl21anc |
|
| 72 |
59 71
|
sylbird |
|
| 73 |
72
|
con1d |
|
| 74 |
73
|
imp |
|
| 75 |
53 54 57 74
|
ifbothda |
|
| 76 |
6 75
|
eqbrtrid |
|
| 77 |
52 50 76
|
3jca |
|