Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Power series
psercnlem1
Next ⟩
psercn
Metamath Proof Explorer
Ascii
Unicode
Theorem
psercnlem1
Description:
Lemma for
psercn
.
(Contributed by
Mario Carneiro
, 18-Mar-2015)
Ref
Expression
Hypotheses
pserf.g
⊢
G
=
x
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
x
n
pserf.f
⊢
F
=
y
∈
S
⟼
∑
j
∈
ℕ
0
G
y
j
pserf.a
⊢
φ
→
A
:
ℕ
0
⟶
ℂ
pserf.r
⊢
R
=
sup
r
∈
ℝ
|
seq
0
+
G
r
∈
dom
⇝
ℝ
*
<
psercn.s
⊢
S
=
abs
-1
0
R
psercn.m
⊢
M
=
if
R
∈
ℝ
a
+
R
2
a
+
1
Assertion
psercnlem1
⊢
φ
∧
a
∈
S
→
M
∈
ℝ
+
∧
a
<
M
∧
M
<
R
Proof
Step
Hyp
Ref
Expression
1
pserf.g
⊢
G
=
x
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
x
n
2
pserf.f
⊢
F
=
y
∈
S
⟼
∑
j
∈
ℕ
0
G
y
j
3
pserf.a
⊢
φ
→
A
:
ℕ
0
⟶
ℂ
4
pserf.r
⊢
R
=
sup
r
∈
ℝ
|
seq
0
+
G
r
∈
dom
⇝
ℝ
*
<
5
psercn.s
⊢
S
=
abs
-1
0
R
6
psercn.m
⊢
M
=
if
R
∈
ℝ
a
+
R
2
a
+
1
7
cnvimass
⊢
abs
-1
0
R
⊆
dom
abs
8
absf
⊢
abs
:
ℂ
⟶
ℝ
9
8
fdmi
⊢
dom
abs
=
ℂ
10
7
9
sseqtri
⊢
abs
-1
0
R
⊆
ℂ
11
5
10
eqsstri
⊢
S
⊆
ℂ
12
11
a1i
⊢
φ
→
S
⊆
ℂ
13
12
sselda
⊢
φ
∧
a
∈
S
→
a
∈
ℂ
14
13
abscld
⊢
φ
∧
a
∈
S
→
a
∈
ℝ
15
readdcl
⊢
a
∈
ℝ
∧
R
∈
ℝ
→
a
+
R
∈
ℝ
16
14
15
sylan
⊢
φ
∧
a
∈
S
∧
R
∈
ℝ
→
a
+
R
∈
ℝ
17
16
rehalfcld
⊢
φ
∧
a
∈
S
∧
R
∈
ℝ
→
a
+
R
2
∈
ℝ
18
peano2re
⊢
a
∈
ℝ
→
a
+
1
∈
ℝ
19
14
18
syl
⊢
φ
∧
a
∈
S
→
a
+
1
∈
ℝ
20
19
adantr
⊢
φ
∧
a
∈
S
∧
¬
R
∈
ℝ
→
a
+
1
∈
ℝ
21
17
20
ifclda
⊢
φ
∧
a
∈
S
→
if
R
∈
ℝ
a
+
R
2
a
+
1
∈
ℝ
22
6
21
eqeltrid
⊢
φ
∧
a
∈
S
→
M
∈
ℝ
23
0re
⊢
0
∈
ℝ
24
23
a1i
⊢
φ
∧
a
∈
S
→
0
∈
ℝ
25
13
absge0d
⊢
φ
∧
a
∈
S
→
0
≤
a
26
breq2
⊢
a
+
R
2
=
if
R
∈
ℝ
a
+
R
2
a
+
1
→
a
<
a
+
R
2
↔
a
<
if
R
∈
ℝ
a
+
R
2
a
+
1
27
breq2
⊢
a
+
1
=
if
R
∈
ℝ
a
+
R
2
a
+
1
→
a
<
a
+
1
↔
a
<
if
R
∈
ℝ
a
+
R
2
a
+
1
28
simpr
⊢
φ
∧
a
∈
S
→
a
∈
S
29
28
5
eleqtrdi
⊢
φ
∧
a
∈
S
→
a
∈
abs
-1
0
R
30
ffn
⊢
abs
:
ℂ
⟶
ℝ
→
abs
Fn
ℂ
31
elpreima
⊢
abs
Fn
ℂ
→
a
∈
abs
-1
0
R
↔
a
∈
ℂ
∧
a
∈
0
R
32
8
30
31
mp2b
⊢
a
∈
abs
-1
0
R
↔
a
∈
ℂ
∧
a
∈
0
R
33
29
32
sylib
⊢
φ
∧
a
∈
S
→
a
∈
ℂ
∧
a
∈
0
R
34
33
simprd
⊢
φ
∧
a
∈
S
→
a
∈
0
R
35
iccssxr
⊢
0
+∞
⊆
ℝ
*
36
1
3
4
radcnvcl
⊢
φ
→
R
∈
0
+∞
37
36
adantr
⊢
φ
∧
a
∈
S
→
R
∈
0
+∞
38
35
37
sselid
⊢
φ
∧
a
∈
S
→
R
∈
ℝ
*
39
elico2
⊢
0
∈
ℝ
∧
R
∈
ℝ
*
→
a
∈
0
R
↔
a
∈
ℝ
∧
0
≤
a
∧
a
<
R
40
23
38
39
sylancr
⊢
φ
∧
a
∈
S
→
a
∈
0
R
↔
a
∈
ℝ
∧
0
≤
a
∧
a
<
R
41
34
40
mpbid
⊢
φ
∧
a
∈
S
→
a
∈
ℝ
∧
0
≤
a
∧
a
<
R
42
41
simp3d
⊢
φ
∧
a
∈
S
→
a
<
R
43
42
adantr
⊢
φ
∧
a
∈
S
∧
R
∈
ℝ
→
a
<
R
44
avglt1
⊢
a
∈
ℝ
∧
R
∈
ℝ
→
a
<
R
↔
a
<
a
+
R
2
45
14
44
sylan
⊢
φ
∧
a
∈
S
∧
R
∈
ℝ
→
a
<
R
↔
a
<
a
+
R
2
46
43
45
mpbid
⊢
φ
∧
a
∈
S
∧
R
∈
ℝ
→
a
<
a
+
R
2
47
14
ltp1d
⊢
φ
∧
a
∈
S
→
a
<
a
+
1
48
47
adantr
⊢
φ
∧
a
∈
S
∧
¬
R
∈
ℝ
→
a
<
a
+
1
49
26
27
46
48
ifbothda
⊢
φ
∧
a
∈
S
→
a
<
if
R
∈
ℝ
a
+
R
2
a
+
1
50
49
6
breqtrrdi
⊢
φ
∧
a
∈
S
→
a
<
M
51
24
14
22
25
50
lelttrd
⊢
φ
∧
a
∈
S
→
0
<
M
52
22
51
elrpd
⊢
φ
∧
a
∈
S
→
M
∈
ℝ
+
53
breq1
⊢
a
+
R
2
=
if
R
∈
ℝ
a
+
R
2
a
+
1
→
a
+
R
2
<
R
↔
if
R
∈
ℝ
a
+
R
2
a
+
1
<
R
54
breq1
⊢
a
+
1
=
if
R
∈
ℝ
a
+
R
2
a
+
1
→
a
+
1
<
R
↔
if
R
∈
ℝ
a
+
R
2
a
+
1
<
R
55
avglt2
⊢
a
∈
ℝ
∧
R
∈
ℝ
→
a
<
R
↔
a
+
R
2
<
R
56
14
55
sylan
⊢
φ
∧
a
∈
S
∧
R
∈
ℝ
→
a
<
R
↔
a
+
R
2
<
R
57
43
56
mpbid
⊢
φ
∧
a
∈
S
∧
R
∈
ℝ
→
a
+
R
2
<
R
58
19
rexrd
⊢
φ
∧
a
∈
S
→
a
+
1
∈
ℝ
*
59
38
58
xrlenltd
⊢
φ
∧
a
∈
S
→
R
≤
a
+
1
↔
¬
a
+
1
<
R
60
0xr
⊢
0
∈
ℝ
*
61
pnfxr
⊢
+∞
∈
ℝ
*
62
elicc1
⊢
0
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
R
∈
0
+∞
↔
R
∈
ℝ
*
∧
0
≤
R
∧
R
≤
+∞
63
60
61
62
mp2an
⊢
R
∈
0
+∞
↔
R
∈
ℝ
*
∧
0
≤
R
∧
R
≤
+∞
64
36
63
sylib
⊢
φ
→
R
∈
ℝ
*
∧
0
≤
R
∧
R
≤
+∞
65
64
simp2d
⊢
φ
→
0
≤
R
66
65
adantr
⊢
φ
∧
a
∈
S
→
0
≤
R
67
ge0gtmnf
⊢
R
∈
ℝ
*
∧
0
≤
R
→
−∞
<
R
68
38
66
67
syl2anc
⊢
φ
∧
a
∈
S
→
−∞
<
R
69
xrre
⊢
R
∈
ℝ
*
∧
a
+
1
∈
ℝ
∧
−∞
<
R
∧
R
≤
a
+
1
→
R
∈
ℝ
70
69
expr
⊢
R
∈
ℝ
*
∧
a
+
1
∈
ℝ
∧
−∞
<
R
→
R
≤
a
+
1
→
R
∈
ℝ
71
38
19
68
70
syl21anc
⊢
φ
∧
a
∈
S
→
R
≤
a
+
1
→
R
∈
ℝ
72
59
71
sylbird
⊢
φ
∧
a
∈
S
→
¬
a
+
1
<
R
→
R
∈
ℝ
73
72
con1d
⊢
φ
∧
a
∈
S
→
¬
R
∈
ℝ
→
a
+
1
<
R
74
73
imp
⊢
φ
∧
a
∈
S
∧
¬
R
∈
ℝ
→
a
+
1
<
R
75
53
54
57
74
ifbothda
⊢
φ
∧
a
∈
S
→
if
R
∈
ℝ
a
+
R
2
a
+
1
<
R
76
6
75
eqbrtrid
⊢
φ
∧
a
∈
S
→
M
<
R
77
52
50
76
3jca
⊢
φ
∧
a
∈
S
→
M
∈
ℝ
+
∧
a
<
M
∧
M
<
R