| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pserf.g |
|
| 2 |
|
pserf.f |
|
| 3 |
|
pserf.a |
|
| 4 |
|
pserf.r |
|
| 5 |
|
pserulm.h |
|
| 6 |
|
pserulm.m |
|
| 7 |
|
pserulm.l |
|
| 8 |
|
pserulm.y |
|
| 9 |
|
nn0uz |
|
| 10 |
|
0zd |
|
| 11 |
|
cnvimass |
|
| 12 |
|
absf |
|
| 13 |
12
|
fdmi |
|
| 14 |
11 13
|
sseqtri |
|
| 15 |
8 14
|
sstrdi |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
resmptd |
|
| 18 |
|
simplr |
|
| 19 |
|
elfznn0 |
|
| 20 |
19
|
adantl |
|
| 21 |
1
|
pserval2 |
|
| 22 |
18 20 21
|
syl2anc |
|
| 23 |
|
simpr |
|
| 24 |
23 9
|
eleqtrdi |
|
| 25 |
24
|
adantr |
|
| 26 |
3
|
adantr |
|
| 27 |
26
|
ffvelcdmda |
|
| 28 |
27
|
adantlr |
|
| 29 |
|
expcl |
|
| 30 |
29
|
adantll |
|
| 31 |
28 30
|
mulcld |
|
| 32 |
19 31
|
sylan2 |
|
| 33 |
22 25 32
|
fsumser |
|
| 34 |
33
|
mpteq2dva |
|
| 35 |
|
eqid |
|
| 36 |
35
|
cnfldtopon |
|
| 37 |
36
|
a1i |
|
| 38 |
|
fzfid |
|
| 39 |
36
|
a1i |
|
| 40 |
|
ffvelcdm |
|
| 41 |
26 19 40
|
syl2an |
|
| 42 |
39 39 41
|
cnmptc |
|
| 43 |
19
|
adantl |
|
| 44 |
35
|
expcn |
|
| 45 |
43 44
|
syl |
|
| 46 |
35
|
mpomulcn |
|
| 47 |
46
|
a1i |
|
| 48 |
|
oveq12 |
|
| 49 |
39 42 45 39 39 47 48
|
cnmpt12 |
|
| 50 |
35 37 38 49
|
fsumcn |
|
| 51 |
35
|
cncfcn1 |
|
| 52 |
50 51
|
eleqtrrdi |
|
| 53 |
34 52
|
eqeltrrd |
|
| 54 |
|
rescncf |
|
| 55 |
16 53 54
|
sylc |
|
| 56 |
17 55
|
eqeltrrd |
|
| 57 |
56 5
|
fmptd |
|
| 58 |
1 2 3 4 5 6 7 8
|
pserulm |
|
| 59 |
9 10 57 58
|
ulmcn |
|