Metamath Proof Explorer


Theorem psercn2

Description: Since by pserulm the series converges uniformly, it is also continuous by ulmcn . (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses pserf.g 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑥𝑛 ) ) ) )
pserf.f 𝐹 = ( 𝑦𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) )
pserf.a ( 𝜑𝐴 : ℕ0 ⟶ ℂ )
pserf.r 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
pserulm.h 𝐻 = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦𝑆 ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) )
pserulm.m ( 𝜑𝑀 ∈ ℝ )
pserulm.l ( 𝜑𝑀 < 𝑅 )
pserulm.y ( 𝜑𝑆 ⊆ ( abs “ ( 0 [,] 𝑀 ) ) )
Assertion psercn2 ( 𝜑𝐹 ∈ ( 𝑆cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 pserf.g 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑥𝑛 ) ) ) )
2 pserf.f 𝐹 = ( 𝑦𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) )
3 pserf.a ( 𝜑𝐴 : ℕ0 ⟶ ℂ )
4 pserf.r 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
5 pserulm.h 𝐻 = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦𝑆 ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) )
6 pserulm.m ( 𝜑𝑀 ∈ ℝ )
7 pserulm.l ( 𝜑𝑀 < 𝑅 )
8 pserulm.y ( 𝜑𝑆 ⊆ ( abs “ ( 0 [,] 𝑀 ) ) )
9 nn0uz 0 = ( ℤ ‘ 0 )
10 0zd ( 𝜑 → 0 ∈ ℤ )
11 cnvimass ( abs “ ( 0 [,] 𝑀 ) ) ⊆ dom abs
12 absf abs : ℂ ⟶ ℝ
13 12 fdmi dom abs = ℂ
14 11 13 sseqtri ( abs “ ( 0 [,] 𝑀 ) ) ⊆ ℂ
15 8 14 sstrdi ( 𝜑𝑆 ⊆ ℂ )
16 15 adantr ( ( 𝜑𝑖 ∈ ℕ0 ) → 𝑆 ⊆ ℂ )
17 16 resmptd ( ( 𝜑𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) ↾ 𝑆 ) = ( 𝑦𝑆 ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) )
18 simplr ( ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑦 ∈ ℂ )
19 elfznn0 ( 𝑘 ∈ ( 0 ... 𝑖 ) → 𝑘 ∈ ℕ0 )
20 19 adantl ( ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑘 ∈ ℕ0 )
21 1 pserval2 ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺𝑦 ) ‘ 𝑘 ) = ( ( 𝐴𝑘 ) · ( 𝑦𝑘 ) ) )
22 18 20 21 syl2anc ( ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝐺𝑦 ) ‘ 𝑘 ) = ( ( 𝐴𝑘 ) · ( 𝑦𝑘 ) ) )
23 simpr ( ( 𝜑𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 )
24 23 9 eleqtrdi ( ( 𝜑𝑖 ∈ ℕ0 ) → 𝑖 ∈ ( ℤ ‘ 0 ) )
25 24 adantr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) → 𝑖 ∈ ( ℤ ‘ 0 ) )
26 3 adantr ( ( 𝜑𝑖 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ )
27 26 ffvelrnda ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℂ )
28 27 adantlr ( ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℂ )
29 expcl ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦𝑘 ) ∈ ℂ )
30 29 adantll ( ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦𝑘 ) ∈ ℂ )
31 28 30 mulcld ( ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑘 ) · ( 𝑦𝑘 ) ) ∈ ℂ )
32 19 31 sylan2 ( ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝐴𝑘 ) · ( 𝑦𝑘 ) ) ∈ ℂ )
33 22 25 32 fsumser ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴𝑘 ) · ( 𝑦𝑘 ) ) = ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) )
34 33 mpteq2dva ( ( 𝜑𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴𝑘 ) · ( 𝑦𝑘 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) )
35 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
36 35 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
37 36 a1i ( ( 𝜑𝑖 ∈ ℕ0 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) )
38 fzfid ( ( 𝜑𝑖 ∈ ℕ0 ) → ( 0 ... 𝑖 ) ∈ Fin )
39 36 a1i ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) )
40 ffvelrn ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℂ )
41 26 19 40 syl2an ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝐴𝑘 ) ∈ ℂ )
42 39 39 41 cnmptc ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ ℂ ↦ ( 𝐴𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
43 19 adantl ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑘 ∈ ℕ0 )
44 35 expcn ( 𝑘 ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
45 43 44 syl ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
46 35 mulcn · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) )
47 46 a1i ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) )
48 39 42 45 47 cnmpt12f ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ ℂ ↦ ( ( 𝐴𝑘 ) · ( 𝑦𝑘 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
49 35 37 38 48 fsumcn ( ( 𝜑𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴𝑘 ) · ( 𝑦𝑘 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
50 35 cncfcn1 ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) )
51 49 50 eleqtrrdi ( ( 𝜑𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴𝑘 ) · ( 𝑦𝑘 ) ) ) ∈ ( ℂ –cn→ ℂ ) )
52 34 51 eqeltrrd ( ( 𝜑𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ –cn→ ℂ ) )
53 rescncf ( 𝑆 ⊆ ℂ → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) ↾ 𝑆 ) ∈ ( 𝑆cn→ ℂ ) ) )
54 16 52 53 sylc ( ( 𝜑𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) ↾ 𝑆 ) ∈ ( 𝑆cn→ ℂ ) )
55 17 54 eqeltrrd ( ( 𝜑𝑖 ∈ ℕ0 ) → ( 𝑦𝑆 ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) ∈ ( 𝑆cn→ ℂ ) )
56 55 5 fmptd ( 𝜑𝐻 : ℕ0 ⟶ ( 𝑆cn→ ℂ ) )
57 1 2 3 4 5 6 7 8 pserulm ( 𝜑𝐻 ( ⇝𝑢𝑆 ) 𝐹 )
58 9 10 56 57 ulmcn ( 𝜑𝐹 ∈ ( 𝑆cn→ ℂ ) )