| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pserf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 2 |
|
pserf.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
| 3 |
|
pserf.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 4 |
|
pserf.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 5 |
|
pserulm.h |
⊢ 𝐻 = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 6 |
|
pserulm.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 7 |
|
pserulm.l |
⊢ ( 𝜑 → 𝑀 < 𝑅 ) |
| 8 |
|
pserulm.y |
⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
| 10 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 11 |
6
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 12 |
|
icc0 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ) → ( ( 0 [,] 𝑀 ) = ∅ ↔ 𝑀 < 0 ) ) |
| 13 |
10 11 12
|
sylancr |
⊢ ( 𝜑 → ( ( 0 [,] 𝑀 ) = ∅ ↔ 𝑀 < 0 ) ) |
| 14 |
13
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → ( 0 [,] 𝑀 ) = ∅ ) |
| 15 |
14
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) = ( ◡ abs “ ∅ ) ) |
| 16 |
|
ima0 |
⊢ ( ◡ abs “ ∅ ) = ∅ |
| 17 |
15 16
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) = ∅ ) |
| 18 |
9 17
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝑆 ⊆ ∅ ) |
| 19 |
|
ss0 |
⊢ ( 𝑆 ⊆ ∅ → 𝑆 = ∅ ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝑆 = ∅ ) |
| 21 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 22 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 23 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) |
| 24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 25 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ dom abs |
| 26 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 27 |
26
|
fdmi |
⊢ dom abs = ℂ |
| 28 |
25 27
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ ℂ |
| 29 |
8 28
|
sstrdi |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 30 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
| 31 |
1 24 30
|
psergf |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
| 32 |
31
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ ℂ ) |
| 33 |
21 23 32
|
serf |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) : ℕ0 ⟶ ℂ ) |
| 34 |
33
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 35 |
34
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝑆 ) → ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 36 |
35
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) |
| 37 |
|
cnex |
⊢ ℂ ∈ V |
| 38 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
| 39 |
29 37 38
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ∈ V ) |
| 41 |
|
elmapg |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ V ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) |
| 42 |
37 40 41
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) |
| 43 |
36 42
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 44 |
43 5
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 45 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
| 46 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
| 47 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 48 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) ) ) |
| 49 |
26 47 48
|
mp2b |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) ) |
| 50 |
46 49
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) ) |
| 51 |
50
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) |
| 52 |
|
0re |
⊢ 0 ∈ ℝ |
| 53 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 54 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) ≤ 𝑀 ) ) ) |
| 55 |
52 53 54
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) ≤ 𝑀 ) ) ) |
| 56 |
51 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) ≤ 𝑀 ) ) |
| 57 |
56
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
| 58 |
57
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ∈ ℝ* ) |
| 59 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
| 60 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 61 |
1 3 4
|
radcnvcl |
⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 62 |
60 61
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
| 64 |
56
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ≤ 𝑀 ) |
| 65 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
| 66 |
58 59 63 64 65
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) < 𝑅 ) |
| 67 |
1 24 4 30 66
|
radcnvlt2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 68 |
21 23 45 32 67
|
isumcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ ℂ ) |
| 69 |
68 2
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 70 |
21 22 44 69
|
ulm0 |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 71 |
20 70
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 72 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
| 73 |
72 21
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 74 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 76 |
75
|
fveq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) |
| 77 |
76
|
cbvmptv |
⊢ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) |
| 78 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 79 |
78
|
mpteq2dv |
⊢ ( 𝑚 = 𝑘 → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
| 80 |
77 79
|
eqtrid |
⊢ ( 𝑚 = 𝑘 → ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
| 81 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑖 ) → 𝑘 ∈ ℕ0 ) |
| 82 |
81
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑘 ∈ ℕ0 ) |
| 83 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑆 ∈ V ) |
| 84 |
83
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ∈ V ) |
| 85 |
74 80 82 84
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
| 86 |
40 73 85
|
seqof |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 87 |
86
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) = ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) |
| 88 |
87
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) ) |
| 89 |
|
0z |
⊢ 0 ∈ ℤ |
| 90 |
|
seqfn |
⊢ ( 0 ∈ ℤ → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) ) |
| 91 |
89 90
|
ax-mp |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) |
| 92 |
21
|
fneq2i |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) ) |
| 93 |
91 92
|
mpbir |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 |
| 94 |
|
dffn5 |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) ) |
| 95 |
93 94
|
mpbi |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) |
| 96 |
88 5 95
|
3eqtr4g |
⊢ ( 𝜑 → 𝐻 = seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐻 = seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ) |
| 98 |
|
0zd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 0 ∈ ℤ ) |
| 99 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑆 ∈ V ) |
| 100 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 101 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ ℂ ) |
| 102 |
1 100 101
|
psergf |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑤 ) : ℕ0 ⟶ ℂ ) |
| 103 |
102
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ∈ ℂ ) |
| 104 |
103
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ∈ ℂ ) |
| 105 |
104
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) |
| 106 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑆 ∈ V ) |
| 107 |
|
elmapg |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ V ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) ) |
| 108 |
37 106 107
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) ) |
| 109 |
105 108
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 110 |
109
|
fmpttd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 112 |
|
fex |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) |
| 113 |
26 37 112
|
mp2an |
⊢ abs ∈ V |
| 114 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑀 ) ∈ V |
| 115 |
113 114
|
coex |
⊢ ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ∈ V |
| 116 |
115
|
a1i |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ∈ V ) |
| 117 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 118 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 119 |
118
|
recnd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑀 ∈ ℂ ) |
| 120 |
1 117 119
|
psergf |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) |
| 121 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) → ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) : ℕ0 ⟶ ℝ ) |
| 122 |
26 120 121
|
sylancr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) : ℕ0 ⟶ ℝ ) |
| 123 |
122
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 124 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ⊆ ℂ ) |
| 125 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) |
| 126 |
124 125
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ ℂ ) |
| 127 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑘 ∈ ℕ0 ) |
| 128 |
126 127
|
expcld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 129 |
128
|
abscld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ∈ ℝ ) |
| 130 |
119
|
adantr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑀 ∈ ℂ ) |
| 131 |
130 127
|
expcld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑀 ↑ 𝑘 ) ∈ ℂ ) |
| 132 |
131
|
abscld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ∈ ℝ ) |
| 133 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 134 |
133 127
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 135 |
134
|
abscld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
| 136 |
134
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 0 ≤ ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 137 |
126
|
abscld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ 𝑧 ) ∈ ℝ ) |
| 138 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑀 ∈ ℝ ) |
| 139 |
126
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 0 ≤ ( abs ‘ 𝑧 ) ) |
| 140 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( abs ‘ 𝑦 ) = ( abs ‘ 𝑧 ) ) |
| 141 |
140
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( ( abs ‘ 𝑦 ) ≤ 𝑀 ↔ ( abs ‘ 𝑧 ) ≤ 𝑀 ) ) |
| 142 |
64
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ( abs ‘ 𝑦 ) ≤ 𝑀 ) |
| 143 |
142
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ∀ 𝑦 ∈ 𝑆 ( abs ‘ 𝑦 ) ≤ 𝑀 ) |
| 144 |
141 143 125
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ 𝑧 ) ≤ 𝑀 ) |
| 145 |
|
leexp1a |
⊢ ( ( ( ( abs ‘ 𝑧 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ ( abs ‘ 𝑧 ) ∧ ( abs ‘ 𝑧 ) ≤ 𝑀 ) ) → ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ≤ ( 𝑀 ↑ 𝑘 ) ) |
| 146 |
137 138 127 139 144 145
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ≤ ( 𝑀 ↑ 𝑘 ) ) |
| 147 |
126 127
|
absexpd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) = ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ) |
| 148 |
130 127
|
absexpd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) = ( ( abs ‘ 𝑀 ) ↑ 𝑘 ) ) |
| 149 |
|
absid |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
| 150 |
6 149
|
sylan |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
| 151 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
| 152 |
151
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ‘ 𝑀 ) ↑ 𝑘 ) = ( 𝑀 ↑ 𝑘 ) ) |
| 153 |
148 152
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) = ( 𝑀 ↑ 𝑘 ) ) |
| 154 |
146 147 153
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ≤ ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) |
| 155 |
129 132 135 136 154
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 156 |
134 128
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 157 |
134 131
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 158 |
155 156 157
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ≤ ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 159 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ∈ V ) |
| 160 |
159
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ∈ V ) |
| 161 |
74 80 127 160
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
| 162 |
161
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 163 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 164 |
163
|
fveq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 165 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 166 |
|
fvex |
⊢ ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ∈ V |
| 167 |
164 165 166
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 168 |
167
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 169 |
1
|
pserval2 |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 170 |
126 127 169
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 171 |
162 168 170
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 172 |
171
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 173 |
120
|
adantr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) |
| 174 |
|
fvco3 |
⊢ ( ( ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) ) |
| 175 |
173 127 174
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) ) |
| 176 |
1
|
pserval2 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) |
| 177 |
130 127 176
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) |
| 178 |
177
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 179 |
175 178
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 180 |
158 172 179
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) ) |
| 181 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑀 < 𝑅 ) |
| 182 |
150 181
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ‘ 𝑀 ) < 𝑅 ) |
| 183 |
|
id |
⊢ ( 𝑖 = 𝑚 → 𝑖 = 𝑚 ) |
| 184 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑚 → ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) |
| 185 |
183 184
|
oveq12d |
⊢ ( 𝑖 = 𝑚 → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) = ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) |
| 186 |
185
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) |
| 187 |
1 117 4 119 182 186
|
radcnvlt1 |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) ) ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ) ∈ dom ⇝ ) ) |
| 188 |
187
|
simprd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ) ∈ dom ⇝ ) |
| 189 |
21 98 99 111 116 123 180 188
|
mtest |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
| 190 |
97 189
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
| 191 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) |
| 192 |
|
ulmcl |
⊢ ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 → 𝑓 : 𝑆 ⟶ ℂ ) |
| 193 |
192
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝑓 : 𝑆 ⟶ ℂ ) |
| 194 |
193
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝑓 = ( 𝑦 ∈ 𝑆 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 195 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) |
| 196 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
| 197 |
31
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
| 198 |
197
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ ℂ ) |
| 199 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐻 : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 200 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 201 |
|
seqex |
⊢ seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ V |
| 202 |
201
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ V ) |
| 203 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
| 204 |
39
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ∈ V ) |
| 205 |
204
|
mptexd |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ V ) |
| 206 |
5
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ V ) → ( 𝐻 ‘ 𝑖 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 207 |
203 205 206
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑖 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 208 |
207
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐻 ‘ 𝑖 ) ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) ) |
| 209 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑦 ∈ 𝑆 ) |
| 210 |
|
fvex |
⊢ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ V |
| 211 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
| 212 |
211
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ V ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
| 213 |
209 210 212
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
| 214 |
208 213
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐻 ‘ 𝑖 ) ‘ 𝑦 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
| 215 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) |
| 216 |
21 195 199 200 202 214 215
|
ulmclm |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ⇝ ( 𝑓 ‘ 𝑦 ) ) |
| 217 |
21 195 196 198 216
|
isumclim |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 218 |
217
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 219 |
2 218
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝐹 = ( 𝑦 ∈ 𝑆 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 220 |
194 219
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝑓 = 𝐹 ) |
| 221 |
191 220
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 222 |
221
|
ex |
⊢ ( 𝜑 → ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) ) |
| 223 |
222
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) ) |
| 224 |
|
eldmg |
⊢ ( 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ( 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ) |
| 225 |
224
|
ibi |
⊢ ( 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) |
| 226 |
223 225
|
impel |
⊢ ( ( 𝜑 ∧ 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 227 |
190 226
|
syldan |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 228 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 229 |
71 227 6 228
|
ltlecasei |
⊢ ( 𝜑 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |