| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pserf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 2 |
|
pserf.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
| 3 |
|
pserf.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 4 |
|
pserf.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 5 |
|
pserulm.h |
⊢ 𝐻 = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 6 |
|
pserulm.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 7 |
|
pserulm.l |
⊢ ( 𝜑 → 𝑀 < 𝑅 ) |
| 8 |
|
pserulm.y |
⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
| 9 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 10 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 11 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ dom abs |
| 12 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 13 |
12
|
fdmi |
⊢ dom abs = ℂ |
| 14 |
11 13
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ ℂ |
| 15 |
8 14
|
sstrdi |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ⊆ ℂ ) |
| 17 |
16
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 18 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑦 ∈ ℂ ) |
| 19 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑖 ) → 𝑘 ∈ ℕ0 ) |
| 20 |
19
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑘 ∈ ℕ0 ) |
| 21 |
1
|
pserval2 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 22 |
18 20 21
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
| 24 |
23 9
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 27 |
26
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 28 |
27
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 29 |
|
expcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) |
| 30 |
29
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) |
| 31 |
28 30
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ∈ ℂ ) |
| 32 |
19 31
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ∈ ℂ ) |
| 33 |
22 25 32
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
| 34 |
33
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 35 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 36 |
35
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 38 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 0 ... 𝑖 ) ∈ Fin ) |
| 39 |
36
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 40 |
|
ffvelcdm |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 41 |
26 19 40
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 42 |
39 39 41
|
cnmptc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ ℂ ↦ ( 𝐴 ‘ 𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 43 |
19
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑘 ∈ ℕ0 ) |
| 44 |
35
|
expcn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 46 |
35
|
mulcn |
⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 47 |
46
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 48 |
39 42 45 47
|
cnmpt12f |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 49 |
35 37 38 48
|
fsumcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 50 |
35
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 51 |
49 50
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 52 |
34 51
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 53 |
|
rescncf |
⊢ ( 𝑆 ⊆ ℂ → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ↾ 𝑆 ) ∈ ( 𝑆 –cn→ ℂ ) ) ) |
| 54 |
16 52 53
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ↾ 𝑆 ) ∈ ( 𝑆 –cn→ ℂ ) ) |
| 55 |
17 54
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( 𝑆 –cn→ ℂ ) ) |
| 56 |
55 5
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ0 ⟶ ( 𝑆 –cn→ ℂ ) ) |
| 57 |
1 2 3 4 5 6 7 8
|
pserulm |
⊢ ( 𝜑 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 58 |
9 10 56 57
|
ulmcn |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |