Description: Lemma for pserdv . (Contributed by Mario Carneiro, 7-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pserf.g | |
|
pserf.f | |
||
pserf.a | |
||
pserf.r | |
||
psercn.s | |
||
psercn.m | |
||
Assertion | pserdvlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pserf.g | |
|
2 | pserf.f | |
|
3 | pserf.a | |
|
4 | pserf.r | |
|
5 | psercn.s | |
|
6 | psercn.m | |
|
7 | cnvimass | |
|
8 | absf | |
|
9 | 8 | fdmi | |
10 | 7 9 | sseqtri | |
11 | 5 10 | eqsstri | |
12 | 11 | a1i | |
13 | 12 | sselda | |
14 | 13 | abscld | |
15 | 1 2 3 4 5 6 | psercnlem1 | |
16 | 15 | simp1d | |
17 | 16 | rpred | |
18 | 14 17 | readdcld | |
19 | 0red | |
|
20 | 13 | absge0d | |
21 | 14 16 | ltaddrpd | |
22 | 19 14 18 20 21 | lelttrd | |
23 | 18 22 | elrpd | |
24 | 23 | rphalfcld | |
25 | 15 | simp2d | |
26 | avglt1 | |
|
27 | 14 17 26 | syl2anc | |
28 | 25 27 | mpbid | |
29 | 18 | rehalfcld | |
30 | 29 | rexrd | |
31 | 17 | rexrd | |
32 | iccssxr | |
|
33 | 1 3 4 | radcnvcl | |
34 | 32 33 | sselid | |
35 | 34 | adantr | |
36 | avglt2 | |
|
37 | 14 17 36 | syl2anc | |
38 | 25 37 | mpbid | |
39 | 15 | simp3d | |
40 | 30 31 35 38 39 | xrlttrd | |
41 | 24 28 40 | 3jca | |