Metamath Proof Explorer


Theorem pserdvlem1

Description: Lemma for pserdv . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses pserf.g G=xn0Anxn
pserf.f F=ySj0Gyj
pserf.a φA:0
pserf.r R=supr|seq0+Grdom*<
psercn.s S=abs-10R
psercn.m M=ifRa+R2a+1
Assertion pserdvlem1 φaSa+M2+a<a+M2a+M2<R

Proof

Step Hyp Ref Expression
1 pserf.g G=xn0Anxn
2 pserf.f F=ySj0Gyj
3 pserf.a φA:0
4 pserf.r R=supr|seq0+Grdom*<
5 psercn.s S=abs-10R
6 psercn.m M=ifRa+R2a+1
7 cnvimass abs-10Rdomabs
8 absf abs:
9 8 fdmi domabs=
10 7 9 sseqtri abs-10R
11 5 10 eqsstri S
12 11 a1i φS
13 12 sselda φaSa
14 13 abscld φaSa
15 1 2 3 4 5 6 psercnlem1 φaSM+a<MM<R
16 15 simp1d φaSM+
17 16 rpred φaSM
18 14 17 readdcld φaSa+M
19 0red φaS0
20 13 absge0d φaS0a
21 14 16 ltaddrpd φaSa<a+M
22 19 14 18 20 21 lelttrd φaS0<a+M
23 18 22 elrpd φaSa+M+
24 23 rphalfcld φaSa+M2+
25 15 simp2d φaSa<M
26 avglt1 aMa<Ma<a+M2
27 14 17 26 syl2anc φaSa<Ma<a+M2
28 25 27 mpbid φaSa<a+M2
29 18 rehalfcld φaSa+M2
30 29 rexrd φaSa+M2*
31 17 rexrd φaSM*
32 iccssxr 0+∞*
33 1 3 4 radcnvcl φR0+∞
34 32 33 sselid φR*
35 34 adantr φaSR*
36 avglt2 aMa<Ma+M2<M
37 14 17 36 syl2anc φaSa<Ma+M2<M
38 25 37 mpbid φaSa+M2<M
39 15 simp3d φaSM<R
40 30 31 35 38 39 xrlttrd φaSa+M2<R
41 24 28 40 3jca φaSa+M2+a<a+M2a+M2<R