Metamath Proof Explorer


Theorem pserdvlem2

Description: Lemma for pserdv . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses pserf.g G=xn0Anxn
pserf.f F=ySj0Gyj
pserf.a φA:0
pserf.r R=supr|seq0+Grdom*<
psercn.s S=abs-10R
psercn.m M=ifRa+R2a+1
pserdv.b B=0ballabsa+M2
Assertion pserdvlem2 φaSDFB=yBk0k+1Ak+1yk

Proof

Step Hyp Ref Expression
1 pserf.g G=xn0Anxn
2 pserf.f F=ySj0Gyj
3 pserf.a φA:0
4 pserf.r R=supr|seq0+Grdom*<
5 psercn.s S=abs-10R
6 psercn.m M=ifRa+R2a+1
7 pserdv.b B=0ballabsa+M2
8 nn0uz 0=0
9 cnelprrecn
10 9 a1i φaS
11 0zd φaS0
12 fzfid φaSk0yB0kFin
13 3 ad3antrrr φaSk0yBA:0
14 cnxmet abs∞Met
15 0cnd φaS0
16 1 2 3 4 5 6 pserdvlem1 φaSa+M2+a<a+M2a+M2<R
17 16 simp1d φaSa+M2+
18 17 rpxrd φaSa+M2*
19 blssm abs∞Met0a+M2*0ballabsa+M2
20 14 15 18 19 mp3an2i φaS0ballabsa+M2
21 7 20 eqsstrid φaSB
22 21 adantr φaSk0B
23 22 sselda φaSk0yBy
24 1 13 23 psergf φaSk0yBGy:0
25 elfznn0 i0ki0
26 ffvelcdm Gy:0i0Gyi
27 24 25 26 syl2an φaSk0yBi0kGyi
28 12 27 fsumcl φaSk0yBi=0kGyi
29 28 fmpttd φaSk0yBi=0kGyi:B
30 cnex V
31 7 ovexi BV
32 30 31 elmap yBi=0kGyiByBi=0kGyi:B
33 29 32 sylibr φaSk0yBi=0kGyiB
34 33 fmpttd φaSk0yBi=0kGyi:0B
35 1 2 3 4 5 6 psercn φF:Scn
36 cncff F:ScnF:S
37 35 36 syl φF:S
38 37 adantr φaSF:S
39 1 2 3 4 5 16 psercnlem2 φaSa0ballabsa+M20ballabsa+M2abs-10a+M2abs-10a+M2S
40 39 simp2d φaS0ballabsa+M2abs-10a+M2
41 7 40 eqsstrid φaSBabs-10a+M2
42 39 simp3d φaSabs-10a+M2S
43 41 42 sstrd φaSBS
44 38 43 fssresd φaSFB:B
45 0zd φaSzB0
46 eqidd φaSzBj0Gzj=Gzj
47 3 ad2antrr φaSzBA:0
48 21 sselda φaSzBz
49 1 47 48 psergf φaSzBGz:0
50 49 ffvelcdmda φaSzBj0Gzj
51 48 abscld φaSzBz
52 51 rexrd φaSzBz*
53 18 adantr φaSzBa+M2*
54 iccssxr 0+∞*
55 1 3 4 radcnvcl φR0+∞
56 54 55 sselid φR*
57 56 ad2antrr φaSzBR*
58 0cn 0
59 eqid abs=abs
60 59 cnmetdval z0zabs0=z0
61 48 58 60 sylancl φaSzBzabs0=z0
62 48 subid1d φaSzBz0=z
63 62 fveq2d φaSzBz0=z
64 61 63 eqtrd φaSzBzabs0=z
65 simpr φaSzBzB
66 65 7 eleqtrdi φaSzBz0ballabsa+M2
67 14 a1i φaSzBabs∞Met
68 0cnd φaSzB0
69 elbl3 abs∞Meta+M2*0zz0ballabsa+M2zabs0<a+M2
70 67 53 68 48 69 syl22anc φaSzBz0ballabsa+M2zabs0<a+M2
71 66 70 mpbid φaSzBzabs0<a+M2
72 64 71 eqbrtrrd φaSzBz<a+M2
73 16 simp3d φaSa+M2<R
74 73 adantr φaSzBa+M2<R
75 52 53 57 72 74 xrlttrd φaSzBz<R
76 1 47 4 48 75 radcnvlt2 φaSzBseq0+Gzdom
77 8 45 46 50 76 isumclim2 φaSzBseq0+Gzj0Gzj
78 43 sselda φaSzBzS
79 fveq2 y=zGy=Gz
80 79 fveq1d y=zGyj=Gzj
81 80 sumeq2sdv y=zj0Gyj=j0Gzj
82 sumex j0GzjV
83 81 2 82 fvmpt zSFz=j0Gzj
84 78 83 syl φaSzBFz=j0Gzj
85 77 84 breqtrrd φaSzBseq0+GzFz
86 oveq2 k=m0k=0m
87 86 sumeq1d k=mi=0kGyi=i=0mGyi
88 87 mpteq2dv k=myBi=0kGyi=yBi=0mGyi
89 eqid k0yBi=0kGyi=k0yBi=0kGyi
90 31 mptex yBi=0mGyiV
91 88 89 90 fvmpt m0k0yBi=0kGyim=yBi=0mGyi
92 91 adantl φaSzBm0k0yBi=0kGyim=yBi=0mGyi
93 92 fveq1d φaSzBm0k0yBi=0kGyimz=yBi=0mGyiz
94 79 fveq1d y=zGyi=Gzi
95 94 sumeq2sdv y=zi=0mGyi=i=0mGzi
96 eqid yBi=0mGyi=yBi=0mGyi
97 sumex i=0mGziV
98 95 96 97 fvmpt zByBi=0mGyiz=i=0mGzi
99 98 ad2antlr φaSzBm0yBi=0mGyiz=i=0mGzi
100 eqidd φaSzBm0i0mGzi=Gzi
101 simpr φaSzBm0m0
102 101 8 eleqtrdi φaSzBm0m0
103 49 adantr φaSzBm0Gz:0
104 elfznn0 i0mi0
105 ffvelcdm Gz:0i0Gzi
106 103 104 105 syl2an φaSzBm0i0mGzi
107 100 102 106 fsumser φaSzBm0i=0mGzi=seq0+Gzm
108 93 99 107 3eqtrd φaSzBm0k0yBi=0kGyimz=seq0+Gzm
109 108 mpteq2dva φaSzBm0k0yBi=0kGyimz=m0seq0+Gzm
110 0z 0
111 seqfn 0seq0+GzFn0
112 110 111 ax-mp seq0+GzFn0
113 8 fneq2i seq0+GzFn0seq0+GzFn0
114 112 113 mpbir seq0+GzFn0
115 dffn5 seq0+GzFn0seq0+Gz=m0seq0+Gzm
116 114 115 mpbi seq0+Gz=m0seq0+Gzm
117 109 116 eqtr4di φaSzBm0k0yBi=0kGyimz=seq0+Gz
118 fvres zBFBz=Fz
119 118 adantl φaSzBFBz=Fz
120 85 117 119 3brtr4d φaSzBm0k0yBi=0kGyimzFBz
121 91 adantl φaSm0k0yBi=0kGyim=yBi=0mGyi
122 121 oveq2d φaSm0Dk0yBi=0kGyim=dyBi=0mGyidy
123 eqid TopOpenfld=TopOpenfld
124 123 cnfldtopon TopOpenfldTopOn
125 124 toponrestid TopOpenfld=TopOpenfld𝑡
126 9 a1i φaSm0
127 123 cnfldtopn TopOpenfld=MetOpenabs
128 127 blopn abs∞Met0a+M2*0ballabsa+M2TopOpenfld
129 14 15 18 128 mp3an2i φaS0ballabsa+M2TopOpenfld
130 7 129 eqeltrid φaSBTopOpenfld
131 130 adantr φaSm0BTopOpenfld
132 fzfid φaSm00mFin
133 3 ad2antrr φaSm0A:0
134 133 3ad2ant1 φaSm0i0myBA:0
135 21 adantr φaSm0B
136 135 sselda φaSm0yBy
137 136 3adant2 φaSm0i0myBy
138 1 134 137 psergf φaSm0i0myBGy:0
139 104 3ad2ant2 φaSm0i0myBi0
140 138 139 ffvelcdmd φaSm0i0myBGyi
141 9 a1i φaSm0i0m
142 ffvelcdm A:0i0Ai
143 133 104 142 syl2an φaSm0i0mAi
144 143 adantr φaSm0i0myBAi
145 136 adantlr φaSm0i0myBy
146 id yy
147 104 adantl φaSm0i0mi0
148 expcl yi0yi
149 146 147 148 syl2anr φaSm0i0myyi
150 145 149 syldan φaSm0i0myByi
151 144 150 mulcld φaSm0i0myBAiyi
152 ovexd φaSm0i0myBAiifi=00iyi1V
153 c0ex 0V
154 ovex iyi1V
155 153 154 ifex ifi=00iyi1V
156 155 a1i φaSm0i0myBifi=00iyi1V
157 155 a1i φaSm0i0myifi=00iyi1V
158 dvexp2 i0dyyidy=yifi=00iyi1
159 147 158 syl φaSm0i0mdyyidy=yifi=00iyi1
160 21 ad2antrr φaSm0i0mB
161 130 ad2antrr φaSm0i0mBTopOpenfld
162 141 149 157 159 160 125 123 161 dvmptres φaSm0i0mdyByidy=yBifi=00iyi1
163 141 150 156 162 143 dvmptcmul φaSm0i0mdyBAiyidy=yBAiifi=00iyi1
164 141 151 152 163 dvmptcl φaSm0i0myBAiifi=00iyi1
165 164 3impa φaSm0i0myBAiifi=00iyi1
166 104 ad2antlr φaSm0i0myBi0
167 1 pserval2 yi0Gyi=Aiyi
168 145 166 167 syl2anc φaSm0i0myBGyi=Aiyi
169 168 mpteq2dva φaSm0i0myBGyi=yBAiyi
170 169 oveq2d φaSm0i0mdyBGyidy=dyBAiyidy
171 170 163 eqtrd φaSm0i0mdyBGyidy=yBAiifi=00iyi1
172 125 123 126 131 132 140 165 171 dvmptfsum φaSm0dyBi=0mGyidy=yBi=0mAiifi=00iyi1
173 122 172 eqtrd φaSm0Dk0yBi=0kGyim=yBi=0mAiifi=00iyi1
174 173 mpteq2dva φaSm0Dk0yBi=0kGyim=m0yBi=0mAiifi=00iyi1
175 nnssnn0 0
176 resmpt 0m0yBi=0mAiifi=00iyi1=myBi=0mAiifi=00iyi1
177 175 176 ax-mp m0yBi=0mAiifi=00iyi1=myBi=0mAiifi=00iyi1
178 oveq1 a=xai=xi
179 178 oveq2d a=xi+1Ai+1ai=i+1Ai+1xi
180 179 mpteq2dv a=xi0i+1Ai+1ai=i0i+1Ai+1xi
181 oveq1 i=ni+1=n+1
182 fvoveq1 i=nAi+1=An+1
183 181 182 oveq12d i=ni+1Ai+1=n+1An+1
184 oveq2 i=nxi=xn
185 183 184 oveq12d i=ni+1Ai+1xi=n+1An+1xn
186 185 cbvmptv i0i+1Ai+1xi=n0n+1An+1xn
187 oveq1 m=nm+1=n+1
188 fvoveq1 m=nAm+1=An+1
189 187 188 oveq12d m=nm+1Am+1=n+1An+1
190 eqid m0m+1Am+1=m0m+1Am+1
191 ovex n+1An+1V
192 189 190 191 fvmpt n0m0m+1Am+1n=n+1An+1
193 192 oveq1d n0m0m+1Am+1nxn=n+1An+1xn
194 193 mpteq2ia n0m0m+1Am+1nxn=n0n+1An+1xn
195 186 194 eqtr4i i0i+1Ai+1xi=n0m0m+1Am+1nxn
196 180 195 eqtrdi a=xi0i+1Ai+1ai=n0m0m+1Am+1nxn
197 196 cbvmptv ai0i+1Ai+1ai=xn0m0m+1Am+1nxn
198 fveq2 y=zai0i+1Ai+1aiy=ai0i+1Ai+1aiz
199 198 fveq1d y=zai0i+1Ai+1aiyk=ai0i+1Ai+1aizk
200 199 sumeq2sdv y=zk0ai0i+1Ai+1aiyk=k0ai0i+1Ai+1aizk
201 200 cbvmptv yBk0ai0i+1Ai+1aiyk=zBk0ai0i+1Ai+1aizk
202 peano2nn0 m0m+10
203 202 adantl φaSm0m+10
204 203 nn0cnd φaSm0m+1
205 133 203 ffvelcdmd φaSm0Am+1
206 204 205 mulcld φaSm0m+1Am+1
207 206 fmpttd φaSm0m+1Am+1:0
208 fveq2 r=jai0i+1Ai+1air=ai0i+1Ai+1aij
209 208 seqeq3d r=jseq0+ai0i+1Ai+1air=seq0+ai0i+1Ai+1aij
210 209 eleq1d r=jseq0+ai0i+1Ai+1airdomseq0+ai0i+1Ai+1aijdom
211 210 cbvrabv r|seq0+ai0i+1Ai+1airdom=j|seq0+ai0i+1Ai+1aijdom
212 211 supeq1i supr|seq0+ai0i+1Ai+1airdom*<=supj|seq0+ai0i+1Ai+1aijdom*<
213 198 seqeq3d y=zseq0+ai0i+1Ai+1aiy=seq0+ai0i+1Ai+1aiz
214 213 fveq1d y=zseq0+ai0i+1Ai+1aiyj=seq0+ai0i+1Ai+1aizj
215 214 cbvmptv yBseq0+ai0i+1Ai+1aiyj=zBseq0+ai0i+1Ai+1aizj
216 fveq2 j=mseq0+ai0i+1Ai+1aizj=seq0+ai0i+1Ai+1aizm
217 216 mpteq2dv j=mzBseq0+ai0i+1Ai+1aizj=zBseq0+ai0i+1Ai+1aizm
218 215 217 eqtrid j=myBseq0+ai0i+1Ai+1aiyj=zBseq0+ai0i+1Ai+1aizm
219 218 cbvmptv j0yBseq0+ai0i+1Ai+1aiyj=m0zBseq0+ai0i+1Ai+1aizm
220 17 rpred φaSa+M2
221 1 2 3 4 5 6 psercnlem1 φaSM+a<MM<R
222 221 simp1d φaSM+
223 222 rpxrd φaSM*
224 197 207 212 radcnvcl φaSsupr|seq0+ai0i+1Ai+1airdom*<0+∞
225 54 224 sselid φaSsupr|seq0+ai0i+1Ai+1airdom*<*
226 221 simp2d φaSa<M
227 cnvimass abs-10Rdomabs
228 absf abs:
229 228 fdmi domabs=
230 227 229 sseqtri abs-10R
231 5 230 eqsstri S
232 231 a1i φS
233 232 sselda φaSa
234 233 abscld φaSa
235 222 rpred φaSM
236 avglt2 aMa<Ma+M2<M
237 234 235 236 syl2anc φaSa<Ma+M2<M
238 226 237 mpbid φaSa+M2<M
239 222 rpge0d φaS0M
240 235 239 absidd φaSM=M
241 222 rpcnd φaSM
242 oveq1 w=Mwi=Mi
243 242 oveq2d w=Mi+1Ai+1wi=i+1Ai+1Mi
244 243 mpteq2dv w=Mi0i+1Ai+1wi=i0i+1Ai+1Mi
245 oveq1 a=wai=wi
246 245 oveq2d a=wi+1Ai+1ai=i+1Ai+1wi
247 246 mpteq2dv a=wi0i+1Ai+1ai=i0i+1Ai+1wi
248 247 cbvmptv ai0i+1Ai+1ai=wi0i+1Ai+1wi
249 nn0ex 0V
250 249 mptex i0i+1Ai+1MiV
251 244 248 250 fvmpt Mai0i+1Ai+1aiM=i0i+1Ai+1Mi
252 241 251 syl φaSai0i+1Ai+1aiM=i0i+1Ai+1Mi
253 252 seqeq3d φaSseq0+ai0i+1Ai+1aiM=seq0+i0i+1Ai+1Mi
254 fveq2 n=iAn=Ai
255 oveq2 n=ixn=xi
256 254 255 oveq12d n=iAnxn=Aixi
257 256 cbvmptv n0Anxn=i0Aixi
258 oveq1 x=yxi=yi
259 258 oveq2d x=yAixi=Aiyi
260 259 mpteq2dv x=yi0Aixi=i0Aiyi
261 257 260 eqtrid x=yn0Anxn=i0Aiyi
262 261 cbvmptv xn0Anxn=yi0Aiyi
263 1 262 eqtri G=yi0Aiyi
264 fveq2 r=sGr=Gs
265 264 seqeq3d r=sseq0+Gr=seq0+Gs
266 265 eleq1d r=sseq0+Grdomseq0+Gsdom
267 266 cbvrabv r|seq0+Grdom=s|seq0+Gsdom
268 267 supeq1i supr|seq0+Grdom*<=sups|seq0+Gsdom*<
269 4 268 eqtri R=sups|seq0+Gsdom*<
270 eqid i0i+1Ai+1Mi=i0i+1Ai+1Mi
271 3 adantr φaSA:0
272 221 simp3d φaSM<R
273 240 272 eqbrtrd φaSM<R
274 263 269 270 271 241 273 dvradcnv φaSseq0+i0i+1Ai+1Midom
275 253 274 eqeltrd φaSseq0+ai0i+1Ai+1aiMdom
276 197 207 212 241 275 radcnvle φaSMsupr|seq0+ai0i+1Ai+1airdom*<
277 240 276 eqbrtrrd φaSMsupr|seq0+ai0i+1Ai+1airdom*<
278 18 223 225 238 277 xrltletrd φaSa+M2<supr|seq0+ai0i+1Ai+1airdom*<
279 197 201 207 212 219 220 278 41 pserulm φaSj0yBseq0+ai0i+1Ai+1aiyjuByBk0ai0i+1Ai+1aiyk
280 21 sselda φaSyBy
281 oveq1 a=yai=yi
282 281 oveq2d a=yi+1Ai+1ai=i+1Ai+1yi
283 282 mpteq2dv a=yi0i+1Ai+1ai=i0i+1Ai+1yi
284 eqid ai0i+1Ai+1ai=ai0i+1Ai+1ai
285 249 mptex i0i+1Ai+1yiV
286 283 284 285 fvmpt yai0i+1Ai+1aiy=i0i+1Ai+1yi
287 280 286 syl φaSyBai0i+1Ai+1aiy=i0i+1Ai+1yi
288 287 adantr φaSyBk0ai0i+1Ai+1aiy=i0i+1Ai+1yi
289 288 fveq1d φaSyBk0ai0i+1Ai+1aiyk=i0i+1Ai+1yik
290 oveq1 i=ki+1=k+1
291 fvoveq1 i=kAi+1=Ak+1
292 290 291 oveq12d i=ki+1Ai+1=k+1Ak+1
293 oveq2 i=kyi=yk
294 292 293 oveq12d i=ki+1Ai+1yi=k+1Ak+1yk
295 eqid i0i+1Ai+1yi=i0i+1Ai+1yi
296 ovex k+1Ak+1ykV
297 294 295 296 fvmpt k0i0i+1Ai+1yik=k+1Ak+1yk
298 297 adantl φaSyBk0i0i+1Ai+1yik=k+1Ak+1yk
299 289 298 eqtrd φaSyBk0ai0i+1Ai+1aiyk=k+1Ak+1yk
300 299 sumeq2dv φaSyBk0ai0i+1Ai+1aiyk=k0k+1Ak+1yk
301 300 mpteq2dva φaSyBk0ai0i+1Ai+1aiyk=yBk0k+1Ak+1yk
302 279 301 breqtrd φaSj0yBseq0+ai0i+1Ai+1aiyjuByBk0k+1Ak+1yk
303 nnuz =1
304 1e0p1 1=0+1
305 304 fveq2i 1=0+1
306 303 305 eqtri =0+1
307 1zzd φaS1
308 0zd φaSyB0
309 peano2nn0 i0i+10
310 309 nn0cnd i0i+1
311 310 adantl φaSyBi0i+1
312 3 ad2antrr φaSyBA:0
313 ffvelcdm A:0i+10Ai+1
314 312 309 313 syl2an φaSyBi0Ai+1
315 311 314 mulcld φaSyBi0i+1Ai+1
316 280 148 sylan φaSyBi0yi
317 315 316 mulcld φaSyBi0i+1Ai+1yi
318 287 317 fmpt3d φaSyBai0i+1Ai+1aiy:0
319 318 ffvelcdmda φaSyBm0ai0i+1Ai+1aiym
320 8 308 319 serf φaSyBseq0+ai0i+1Ai+1aiy:0
321 320 ffvelcdmda φaSyBj0seq0+ai0i+1Ai+1aiyj
322 321 an32s φaSj0yBseq0+ai0i+1Ai+1aiyj
323 322 fmpttd φaSj0yBseq0+ai0i+1Ai+1aiyj:B
324 30 31 elmap yBseq0+ai0i+1Ai+1aiyjByBseq0+ai0i+1Ai+1aiyj:B
325 323 324 sylibr φaSj0yBseq0+ai0i+1Ai+1aiyjB
326 325 fmpttd φaSj0yBseq0+ai0i+1Ai+1aiyj:0B
327 elfznn i1mi
328 327 nnne0d i1mi0
329 328 neneqd i1m¬i=0
330 329 iffalsed i1mifi=00iyi1=iyi1
331 330 oveq2d i1mAiifi=00iyi1=Aiiyi1
332 331 sumeq2i i=1mAiifi=00iyi1=i=1mAiiyi1
333 1zzd φaSmyB1
334 nnz mm
335 334 ad2antlr φaSmyBm
336 271 ad2antrr φaSmyBA:0
337 327 nnnn0d i1mi0
338 336 337 142 syl2an φaSmyBi1mAi
339 327 adantl φaSmyBi1mi
340 339 nncnd φaSmyBi1mi
341 280 adantlr φaSmyBy
342 nnm1nn0 ii10
343 327 342 syl i1mi10
344 expcl yi10yi1
345 341 343 344 syl2an φaSmyBi1myi1
346 340 345 mulcld φaSmyBi1miyi1
347 338 346 mulcld φaSmyBi1mAiiyi1
348 fveq2 i=k+1Ai=Ak+1
349 id i=k+1i=k+1
350 oveq1 i=k+1i1=k+1-1
351 350 oveq2d i=k+1yi1=yk+1-1
352 349 351 oveq12d i=k+1iyi1=k+1yk+1-1
353 348 352 oveq12d i=k+1Aiiyi1=Ak+1k+1yk+1-1
354 333 333 335 347 353 fsumshftm φaSmyBi=1mAiiyi1=k=11m1Ak+1k+1yk+1-1
355 332 354 eqtrid φaSmyBi=1mAiifi=00iyi1=k=11m1Ak+1k+1yk+1-1
356 fz1ssfz0 1m0m
357 356 a1i φaSmyB1m0m
358 331 adantl φaSmyBi1mAiifi=00iyi1=Aiiyi1
359 358 347 eqeltrd φaSmyBi1mAiifi=00iyi1
360 eldif i0m0+1mi0m¬i0+1m
361 elfzuz2 i0mm0
362 elfzp12 m0i0mi=0i0+1m
363 361 362 syl i0mi0mi=0i0+1m
364 363 ibi i0mi=0i0+1m
365 364 ord i0m¬i=0i0+1m
366 365 con1d i0m¬i0+1mi=0
367 366 imp i0m¬i0+1mi=0
368 360 367 sylbi i0m0+1mi=0
369 304 oveq1i 1m=0+1m
370 369 difeq2i 0m1m=0m0+1m
371 368 370 eleq2s i0m1mi=0
372 371 adantl φaSmyBi0m1mi=0
373 372 iftrued φaSmyBi0m1mifi=00iyi1=0
374 373 oveq2d φaSmyBi0m1mAiifi=00iyi1=Ai0
375 eldifi i0m1mi0m
376 375 104 syl i0m1mi0
377 336 376 142 syl2an φaSmyBi0m1mAi
378 377 mul01d φaSmyBi0m1mAi0=0
379 374 378 eqtrd φaSmyBi0m1mAiifi=00iyi1=0
380 fzfid φaSmyB0mFin
381 357 359 379 380 fsumss φaSmyBi=1mAiifi=00iyi1=i=0mAiifi=00iyi1
382 1m1e0 11=0
383 382 oveq1i 11m1=0m1
384 383 sumeq1i k=11m1Ak+1k+1yk+1-1=k=0m1Ak+1k+1yk+1-1
385 elfznn0 k0m1k0
386 385 adantl φaSmyBk0m1k0
387 386 297 syl φaSmyBk0m1i0i+1Ai+1yik=k+1Ak+1yk
388 341 adantr φaSmyBk0m1y
389 388 286 syl φaSmyBk0m1ai0i+1Ai+1aiy=i0i+1Ai+1yi
390 389 fveq1d φaSmyBk0m1ai0i+1Ai+1aiyk=i0i+1Ai+1yik
391 336 adantr φaSmyBk0m1A:0
392 peano2nn0 k0k+10
393 386 392 syl φaSmyBk0m1k+10
394 391 393 ffvelcdmd φaSmyBk0m1Ak+1
395 393 nn0cnd φaSmyBk0m1k+1
396 expcl yk0yk
397 341 385 396 syl2an φaSmyBk0m1yk
398 394 395 397 mul12d φaSmyBk0m1Ak+1k+1yk=k+1Ak+1yk
399 386 nn0cnd φaSmyBk0m1k
400 ax-1cn 1
401 pncan k1k+1-1=k
402 399 400 401 sylancl φaSmyBk0m1k+1-1=k
403 402 oveq2d φaSmyBk0m1yk+1-1=yk
404 403 oveq2d φaSmyBk0m1k+1yk+1-1=k+1yk
405 404 oveq2d φaSmyBk0m1Ak+1k+1yk+1-1=Ak+1k+1yk
406 395 394 397 mulassd φaSmyBk0m1k+1Ak+1yk=k+1Ak+1yk
407 398 405 406 3eqtr4d φaSmyBk0m1Ak+1k+1yk+1-1=k+1Ak+1yk
408 387 390 407 3eqtr4d φaSmyBk0m1ai0i+1Ai+1aiyk=Ak+1k+1yk+1-1
409 nnm1nn0 mm10
410 409 adantl φaSmm10
411 410 adantr φaSmyBm10
412 411 8 eleqtrdi φaSmyBm10
413 403 397 eqeltrd φaSmyBk0m1yk+1-1
414 395 413 mulcld φaSmyBk0m1k+1yk+1-1
415 394 414 mulcld φaSmyBk0m1Ak+1k+1yk+1-1
416 408 412 415 fsumser φaSmyBk=0m1Ak+1k+1yk+1-1=seq0+ai0i+1Ai+1aiym1
417 384 416 eqtrid φaSmyBk=11m1Ak+1k+1yk+1-1=seq0+ai0i+1Ai+1aiym1
418 355 381 417 3eqtr3d φaSmyBi=0mAiifi=00iyi1=seq0+ai0i+1Ai+1aiym1
419 418 mpteq2dva φaSmyBi=0mAiifi=00iyi1=yBseq0+ai0i+1Ai+1aiym1
420 fveq2 j=m1seq0+ai0i+1Ai+1aiyj=seq0+ai0i+1Ai+1aiym1
421 420 mpteq2dv j=m1yBseq0+ai0i+1Ai+1aiyj=yBseq0+ai0i+1Ai+1aiym1
422 eqid j0yBseq0+ai0i+1Ai+1aiyj=j0yBseq0+ai0i+1Ai+1aiyj
423 31 mptex yBseq0+ai0i+1Ai+1aiym1V
424 421 422 423 fvmpt m10j0yBseq0+ai0i+1Ai+1aiyjm1=yBseq0+ai0i+1Ai+1aiym1
425 410 424 syl φaSmj0yBseq0+ai0i+1Ai+1aiyjm1=yBseq0+ai0i+1Ai+1aiym1
426 419 425 eqtr4d φaSmyBi=0mAiifi=00iyi1=j0yBseq0+ai0i+1Ai+1aiyjm1
427 426 mpteq2dva φaSmyBi=0mAiifi=00iyi1=mj0yBseq0+ai0i+1Ai+1aiyjm1
428 8 306 11 307 326 427 ulmshft φaSj0yBseq0+ai0i+1Ai+1aiyjuByBk0k+1Ak+1ykmyBi=0mAiifi=00iyi1uByBk0k+1Ak+1yk
429 302 428 mpbid φaSmyBi=0mAiifi=00iyi1uByBk0k+1Ak+1yk
430 177 429 eqbrtrid φaSm0yBi=0mAiifi=00iyi1uByBk0k+1Ak+1yk
431 1nn0 10
432 431 a1i φaS10
433 fzfid φaSm0yB0mFin
434 164 an32s φaSm0yBi0mAiifi=00iyi1
435 433 434 fsumcl φaSm0yBi=0mAiifi=00iyi1
436 435 fmpttd φaSm0yBi=0mAiifi=00iyi1:B
437 30 31 elmap yBi=0mAiifi=00iyi1ByBi=0mAiifi=00iyi1:B
438 436 437 sylibr φaSm0yBi=0mAiifi=00iyi1B
439 438 fmpttd φaSm0yBi=0mAiifi=00iyi1:0B
440 8 303 432 439 ulmres φaSm0yBi=0mAiifi=00iyi1uByBk0k+1Ak+1ykm0yBi=0mAiifi=00iyi1uByBk0k+1Ak+1yk
441 430 440 mpbird φaSm0yBi=0mAiifi=00iyi1uByBk0k+1Ak+1yk
442 174 441 eqbrtrd φaSm0Dk0yBi=0kGyimuByBk0k+1Ak+1yk
443 8 10 11 34 44 120 442 ulmdv φaSDFB=yBk0k+1Ak+1yk