Metamath Proof Explorer


Theorem dvradcnv

Description: The radius of convergence of the (formal) derivative H of the power series G is at least as large as the radius of convergence of G . (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypotheses dvradcnv.g G=xn0Anxn
dvradcnv.r R=supr|seq0+Grdom*<
dvradcnv.h H=n0n+1An+1Xn
dvradcnv.a φA:0
dvradcnv.x φX
dvradcnv.l φX<R
Assertion dvradcnv φseq0+Hdom

Proof

Step Hyp Ref Expression
1 dvradcnv.g G=xn0Anxn
2 dvradcnv.r R=supr|seq0+Grdom*<
3 dvradcnv.h H=n0n+1An+1Xn
4 dvradcnv.a φA:0
5 dvradcnv.x φX
6 dvradcnv.l φX<R
7 nn0uz 0=0
8 1nn0 10
9 8 a1i φ10
10 ax-1cn 1
11 nn0cn k0k
12 11 adantl φk0k
13 nn0ex 0V
14 13 mptex i0iGXiV
15 14 shftval4 1ki0iGXishift-1k=i0iGXi1+k
16 10 12 15 sylancr φk0i0iGXishift-1k=i0iGXi1+k
17 addcom 1k1+k=k+1
18 10 12 17 sylancr φk01+k=k+1
19 18 fveq2d φk0i0iGXi1+k=i0iGXik+1
20 peano2nn0 k0k+10
21 20 adantl φk0k+10
22 id i=k+1i=k+1
23 2fveq3 i=k+1GXi=GXk+1
24 22 23 oveq12d i=k+1iGXi=k+1GXk+1
25 eqid i0iGXi=i0iGXi
26 ovex k+1GXk+1V
27 24 25 26 fvmpt k+10i0iGXik+1=k+1GXk+1
28 21 27 syl φk0i0iGXik+1=k+1GXk+1
29 1 pserval2 Xk+10GXk+1=Ak+1Xk+1
30 5 20 29 syl2an φk0GXk+1=Ak+1Xk+1
31 30 fveq2d φk0GXk+1=Ak+1Xk+1
32 31 oveq2d φk0k+1GXk+1=k+1Ak+1Xk+1
33 28 32 eqtrd φk0i0iGXik+1=k+1Ak+1Xk+1
34 16 19 33 3eqtrd φk0i0iGXishift-1k=k+1Ak+1Xk+1
35 21 nn0red φk0k+1
36 ffvelcdm A:0k+10Ak+1
37 4 20 36 syl2an φk0Ak+1
38 expcl Xk+10Xk+1
39 5 20 38 syl2an φk0Xk+1
40 37 39 mulcld φk0Ak+1Xk+1
41 40 abscld φk0Ak+1Xk+1
42 35 41 remulcld φk0k+1Ak+1Xk+1
43 34 42 eqeltrd φk0i0iGXishift-1k
44 oveq1 n=kn+1=k+1
45 44 fveq2d n=kAn+1=Ak+1
46 44 45 oveq12d n=kn+1An+1=k+1Ak+1
47 oveq2 n=kXn=Xk
48 46 47 oveq12d n=kn+1An+1Xn=k+1Ak+1Xk
49 ovex k+1Ak+1XkV
50 48 3 49 fvmpt k0Hk=k+1Ak+1Xk
51 50 adantl φk0Hk=k+1Ak+1Xk
52 21 nn0cnd φk0k+1
53 52 37 mulcld φk0k+1Ak+1
54 expcl Xk0Xk
55 5 54 sylan φk0Xk
56 53 55 mulcld φk0k+1Ak+1Xk
57 51 56 eqeltrd φk0Hk
58 id i=ki=k
59 2fveq3 i=kGXi=GXk
60 58 59 oveq12d i=kiGXi=kGXk
61 60 cbvmptv i0iGXi=k0kGXk
62 1 4 2 5 6 61 radcnvlt1 φseq0+i0iGXidomseq0+absGXdom
63 62 simpld φseq0+i0iGXidom
64 climdm seq0+i0iGXidomseq0+i0iGXiseq0+i0iGXi
65 63 64 sylib φseq0+i0iGXiseq0+i0iGXi
66 0z 0
67 neg1z 1
68 14 isershft 01seq0+i0iGXiseq0+i0iGXiseq0+-1+i0iGXishift-1seq0+i0iGXi
69 66 67 68 mp2an seq0+i0iGXiseq0+i0iGXiseq0+-1+i0iGXishift-1seq0+i0iGXi
70 65 69 sylib φseq0+-1+i0iGXishift-1seq0+i0iGXi
71 seqex seq0+-1+i0iGXishift-1V
72 fvex seq0+i0iGXiV
73 71 72 breldm seq0+-1+i0iGXishift-1seq0+i0iGXiseq0+-1+i0iGXishift-1dom
74 70 73 syl φseq0+-1+i0iGXishift-1dom
75 eqid 0+-1=0+-1
76 neg1cn 1
77 76 addlidi 0+-1=1
78 0le1 01
79 1re 1
80 le0neg2 10110
81 79 80 ax-mp 0110
82 78 81 mpbi 10
83 77 82 eqbrtri 0+-10
84 77 67 eqeltri 0+-1
85 84 eluz1i 00+-100+-10
86 66 83 85 mpbir2an 00+-1
87 86 a1i φ00+-1
88 eluzelcn k0+-1k
89 88 adantl φk0+-1k
90 10 89 15 sylancr φk0+-1i0iGXishift-1k=i0iGXi1+k
91 nn0re i0i
92 91 adantl φi0i
93 1 4 5 psergf φGX:0
94 93 ffvelcdmda φi0GXi
95 94 abscld φi0GXi
96 92 95 remulcld φi0iGXi
97 96 recnd φi0iGXi
98 97 fmpttd φi0iGXi:0
99 10 88 17 sylancr k0+-11+k=k+1
100 eluzp1p1 k0+-1k+10+-1+1
101 77 oveq1i 0+-1+1=-1+1
102 1pneg1e0 1+-1=0
103 10 76 102 addcomli -1+1=0
104 101 103 eqtri 0+-1+1=0
105 104 fveq2i 0+-1+1=0
106 7 105 eqtr4i 0=0+-1+1
107 100 106 eleqtrrdi k0+-1k+10
108 99 107 eqeltrd k0+-11+k0
109 ffvelcdm i0iGXi:01+k0i0iGXi1+k
110 98 108 109 syl2an φk0+-1i0iGXi1+k
111 90 110 eqeltrd φk0+-1i0iGXishift-1k
112 75 87 111 iserex φseq0+-1+i0iGXishift-1domseq0+i0iGXishift-1dom
113 74 112 mpbid φseq0+i0iGXishift-1dom
114 1red φX=01
115 neqne ¬X=0X0
116 absrpcl XX0X+
117 5 115 116 syl2an φ¬X=0X+
118 117 rprecred φ¬X=01X
119 114 118 ifclda φifX=011X
120 oveq1 1=ifX=011X1k+1Ak+1Xk+1=ifX=011Xk+1Ak+1Xk+1
121 120 breq2d 1=ifX=011Xk+1Ak+1Xk1k+1Ak+1Xk+1k+1Ak+1XkifX=011Xk+1Ak+1Xk+1
122 oveq1 1X=ifX=011X1Xk+1Ak+1Xk+1=ifX=011Xk+1Ak+1Xk+1
123 122 breq2d 1X=ifX=011Xk+1Ak+1Xk1Xk+1Ak+1Xk+1k+1Ak+1XkifX=011Xk+1Ak+1Xk+1
124 elnnuz kk1
125 nnnn0 kk0
126 124 125 sylbir k1k0
127 21 nn0ge0d φk00k+1
128 40 absge0d φk00Ak+1Xk+1
129 35 41 127 128 mulge0d φk00k+1Ak+1Xk+1
130 126 129 sylan2 φk10k+1Ak+1Xk+1
131 130 adantr φk1X=00k+1Ak+1Xk+1
132 oveq1 X=0Xk=0k
133 simpr φk1k1
134 133 124 sylibr φk1k
135 134 0expd φk10k=0
136 132 135 sylan9eqr φk1X=0Xk=0
137 136 oveq2d φk1X=0k+1Ak+1Xk=k+1Ak+10
138 53 mul01d φk0k+1Ak+10=0
139 126 138 sylan2 φk1k+1Ak+10=0
140 139 adantr φk1X=0k+1Ak+10=0
141 137 140 eqtrd φk1X=0k+1Ak+1Xk=0
142 141 abs00bd φk1X=0k+1Ak+1Xk=0
143 42 recnd φk0k+1Ak+1Xk+1
144 143 mullidd φk01k+1Ak+1Xk+1=k+1Ak+1Xk+1
145 126 144 sylan2 φk11k+1Ak+1Xk+1=k+1Ak+1Xk+1
146 145 adantr φk1X=01k+1Ak+1Xk+1=k+1Ak+1Xk+1
147 131 142 146 3brtr4d φk1X=0k+1Ak+1Xk1k+1Ak+1Xk+1
148 df-ne X0¬X=0
149 56 abscld φk0k+1Ak+1Xk
150 52 37 55 mulassd φk0k+1Ak+1Xk=k+1Ak+1Xk
151 150 fveq2d φk0k+1Ak+1Xk=k+1Ak+1Xk
152 37 55 mulcld φk0Ak+1Xk
153 52 152 absmuld φk0k+1Ak+1Xk=k+1Ak+1Xk
154 35 127 absidd φk0k+1=k+1
155 154 oveq1d φk0k+1Ak+1Xk=k+1Ak+1Xk
156 151 153 155 3eqtrd φk0k+1Ak+1Xk=k+1Ak+1Xk
157 149 156 eqled φk0k+1Ak+1Xkk+1Ak+1Xk
158 157 adantr φk0X0k+1Ak+1Xkk+1Ak+1Xk
159 5 adantr φk0X
160 116 rpreccld XX01X+
161 159 160 sylan φk0X01X+
162 161 rpcnd φk0X01X
163 52 adantr φk0X0k+1
164 41 adantr φk0X0Ak+1Xk+1
165 164 recnd φk0X0Ak+1Xk+1
166 162 163 165 mul12d φk0X01Xk+1Ak+1Xk+1=k+11XAk+1Xk+1
167 40 adantr φk0X0Ak+1Xk+1
168 5 ad2antrr φk0X0X
169 simpr φk0X0X0
170 167 168 169 absdivd φk0X0Ak+1Xk+1X=Ak+1Xk+1X
171 37 adantr φk0X0Ak+1
172 39 adantr φk0X0Xk+1
173 171 172 168 169 divassd φk0X0Ak+1Xk+1X=Ak+1Xk+1X
174 12 adantr φk0X0k
175 pncan k1k+1-1=k
176 174 10 175 sylancl φk0X0k+1-1=k
177 176 oveq2d φk0X0Xk+1-1=Xk
178 21 nn0zd φk0k+1
179 178 adantr φk0X0k+1
180 168 169 179 expm1d φk0X0Xk+1-1=Xk+1X
181 177 180 eqtr3d φk0X0Xk=Xk+1X
182 181 oveq2d φk0X0Ak+1Xk=Ak+1Xk+1X
183 173 182 eqtr4d φk0X0Ak+1Xk+1X=Ak+1Xk
184 183 fveq2d φk0X0Ak+1Xk+1X=Ak+1Xk
185 5 abscld φX
186 185 ad2antrr φk0X0X
187 186 recnd φk0X0X
188 159 116 sylan φk0X0X+
189 188 rpne0d φk0X0X0
190 165 187 189 divrec2d φk0X0Ak+1Xk+1X=1XAk+1Xk+1
191 170 184 190 3eqtr3rd φk0X01XAk+1Xk+1=Ak+1Xk
192 191 oveq2d φk0X0k+11XAk+1Xk+1=k+1Ak+1Xk
193 166 192 eqtrd φk0X01Xk+1Ak+1Xk+1=k+1Ak+1Xk
194 158 193 breqtrrd φk0X0k+1Ak+1Xk1Xk+1Ak+1Xk+1
195 126 194 sylanl2 φk1X0k+1Ak+1Xk1Xk+1Ak+1Xk+1
196 148 195 sylan2br φk1¬X=0k+1Ak+1Xk1Xk+1Ak+1Xk+1
197 121 123 147 196 ifbothda φk1k+1Ak+1XkifX=011Xk+1Ak+1Xk+1
198 51 fveq2d φk0Hk=k+1Ak+1Xk
199 126 198 sylan2 φk1Hk=k+1Ak+1Xk
200 34 oveq2d φk0ifX=011Xi0iGXishift-1k=ifX=011Xk+1Ak+1Xk+1
201 126 200 sylan2 φk1ifX=011Xi0iGXishift-1k=ifX=011Xk+1Ak+1Xk+1
202 197 199 201 3brtr4d φk1HkifX=011Xi0iGXishift-1k
203 7 9 43 57 113 119 202 cvgcmpce φseq0+Hdom