| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvradcnv.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 2 |
|
dvradcnv.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 3 |
|
dvradcnv.h |
⊢ 𝐻 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 4 |
|
dvradcnv.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 5 |
|
dvradcnv.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 6 |
|
dvradcnv.l |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) |
| 7 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 8 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 11 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 13 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 14 |
13
|
mptex |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ∈ V |
| 15 |
14
|
shftval4 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ) |
| 16 |
10 12 15
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ) |
| 17 |
|
addcom |
⊢ ( ( 1 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 1 + 𝑘 ) = ( 𝑘 + 1 ) ) |
| 18 |
10 12 17
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 + 𝑘 ) = ( 𝑘 + 1 ) ) |
| 19 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 20 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 22 |
|
id |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → 𝑖 = ( 𝑘 + 1 ) ) |
| 23 |
|
2fveq3 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 24 |
22 23
|
oveq12d |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 25 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) |
| 26 |
|
ovex |
⊢ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) ∈ V |
| 27 |
24 25 26
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 28 |
21 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 29 |
1
|
pserval2 |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) |
| 30 |
5 20 29
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) |
| 31 |
30
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) = ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 32 |
31
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 33 |
28 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 34 |
16 19 33
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 35 |
21
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 36 |
|
ffvelcdm |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 37 |
4 20 36
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 38 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝑋 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 39 |
5 20 38
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑋 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 40 |
37 39
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 41 |
40
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
| 42 |
35 41
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ∈ ℝ ) |
| 43 |
34 42
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ∈ ℝ ) |
| 44 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 + 1 ) = ( 𝑘 + 1 ) ) |
| 45 |
44
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ‘ ( 𝑛 + 1 ) ) = ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) |
| 46 |
44 45
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
| 47 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑋 ↑ 𝑛 ) = ( 𝑋 ↑ 𝑘 ) ) |
| 48 |
46 47
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 49 |
|
ovex |
⊢ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ∈ V |
| 50 |
48 3 49
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐻 ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 52 |
21
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 53 |
52 37
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 54 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑘 ) ∈ ℂ ) |
| 55 |
5 54
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑘 ) ∈ ℂ ) |
| 56 |
53 55
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ∈ ℂ ) |
| 57 |
51 56
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) ∈ ℂ ) |
| 58 |
|
id |
⊢ ( 𝑖 = 𝑘 → 𝑖 = 𝑘 ) |
| 59 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑘 → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) |
| 60 |
58 59
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) = ( 𝑘 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 61 |
60
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑘 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 62 |
1 4 2 5 6 61
|
radcnvlt1 |
⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) |
| 63 |
62
|
simpld |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ∈ dom ⇝ ) |
| 64 |
|
climdm |
⊢ ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 65 |
63 64
|
sylib |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 66 |
|
0z |
⊢ 0 ∈ ℤ |
| 67 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 68 |
14
|
isershft |
⊢ ( ( 0 ∈ ℤ ∧ - 1 ∈ ℤ ) → ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ↔ seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 69 |
66 67 68
|
mp2an |
⊢ ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ↔ seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 70 |
65 69
|
sylib |
⊢ ( 𝜑 → seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 71 |
|
seqex |
⊢ seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ V |
| 72 |
|
fvex |
⊢ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ∈ V |
| 73 |
71 72
|
breldm |
⊢ ( seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) → seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ) |
| 74 |
70 73
|
syl |
⊢ ( 𝜑 → seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ) |
| 75 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 0 + - 1 ) ) = ( ℤ≥ ‘ ( 0 + - 1 ) ) |
| 76 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 77 |
76
|
addlidi |
⊢ ( 0 + - 1 ) = - 1 |
| 78 |
|
0le1 |
⊢ 0 ≤ 1 |
| 79 |
|
1re |
⊢ 1 ∈ ℝ |
| 80 |
|
le0neg2 |
⊢ ( 1 ∈ ℝ → ( 0 ≤ 1 ↔ - 1 ≤ 0 ) ) |
| 81 |
79 80
|
ax-mp |
⊢ ( 0 ≤ 1 ↔ - 1 ≤ 0 ) |
| 82 |
78 81
|
mpbi |
⊢ - 1 ≤ 0 |
| 83 |
77 82
|
eqbrtri |
⊢ ( 0 + - 1 ) ≤ 0 |
| 84 |
77 67
|
eqeltri |
⊢ ( 0 + - 1 ) ∈ ℤ |
| 85 |
84
|
eluz1i |
⊢ ( 0 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ↔ ( 0 ∈ ℤ ∧ ( 0 + - 1 ) ≤ 0 ) ) |
| 86 |
66 83 85
|
mpbir2an |
⊢ 0 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) |
| 87 |
86
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) |
| 88 |
|
eluzelcn |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → 𝑘 ∈ ℂ ) |
| 89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 90 |
10 89 15
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ) |
| 91 |
|
nn0re |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℝ ) |
| 93 |
1 4 5
|
psergf |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| 94 |
93
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ∈ ℂ ) |
| 95 |
94
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 96 |
92 95
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 97 |
96
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ∈ ℂ ) |
| 98 |
97
|
fmpttd |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 99 |
10 88 17
|
sylancr |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → ( 1 + 𝑘 ) = ( 𝑘 + 1 ) ) |
| 100 |
|
eluzp1p1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( ( 0 + - 1 ) + 1 ) ) ) |
| 101 |
77
|
oveq1i |
⊢ ( ( 0 + - 1 ) + 1 ) = ( - 1 + 1 ) |
| 102 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
| 103 |
10 76 102
|
addcomli |
⊢ ( - 1 + 1 ) = 0 |
| 104 |
101 103
|
eqtri |
⊢ ( ( 0 + - 1 ) + 1 ) = 0 |
| 105 |
104
|
fveq2i |
⊢ ( ℤ≥ ‘ ( ( 0 + - 1 ) + 1 ) ) = ( ℤ≥ ‘ 0 ) |
| 106 |
7 105
|
eqtr4i |
⊢ ℕ0 = ( ℤ≥ ‘ ( ( 0 + - 1 ) + 1 ) ) |
| 107 |
100 106
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 108 |
99 107
|
eqeltrd |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → ( 1 + 𝑘 ) ∈ ℕ0 ) |
| 109 |
|
ffvelcdm |
⊢ ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) : ℕ0 ⟶ ℂ ∧ ( 1 + 𝑘 ) ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ∈ ℂ ) |
| 110 |
98 108 109
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ∈ ℂ ) |
| 111 |
90 110
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ∈ ℂ ) |
| 112 |
75 87 111
|
iserex |
⊢ ( 𝜑 → ( seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ) ) |
| 113 |
74 112
|
mpbid |
⊢ ( 𝜑 → seq 0 ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ) |
| 114 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → 1 ∈ ℝ ) |
| 115 |
|
neqne |
⊢ ( ¬ 𝑋 = 0 → 𝑋 ≠ 0 ) |
| 116 |
|
absrpcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ∈ ℝ+ ) |
| 117 |
5 115 116
|
syl2an |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 0 ) → ( abs ‘ 𝑋 ) ∈ ℝ+ ) |
| 118 |
117
|
rprecred |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 0 ) → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℝ ) |
| 119 |
114 118
|
ifclda |
⊢ ( 𝜑 → if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 120 |
|
oveq1 |
⊢ ( 1 = if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) → ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 121 |
120
|
breq2d |
⊢ ( 1 = if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) → ( ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ↔ ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) ) |
| 122 |
|
oveq1 |
⊢ ( ( 1 / ( abs ‘ 𝑋 ) ) = if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 123 |
122
|
breq2d |
⊢ ( ( 1 / ( abs ‘ 𝑋 ) ) = if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) → ( ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ↔ ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) ) |
| 124 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 125 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 126 |
124 125
|
sylbir |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → 𝑘 ∈ ℕ0 ) |
| 127 |
21
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 𝑘 + 1 ) ) |
| 128 |
40
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 129 |
35 41 127 128
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 130 |
126 129
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 0 ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 131 |
130
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → 0 ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 132 |
|
oveq1 |
⊢ ( 𝑋 = 0 → ( 𝑋 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 133 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 134 |
133 124
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ℕ ) |
| 135 |
134
|
0expd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( 0 ↑ 𝑘 ) = 0 ) |
| 136 |
132 135
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( 𝑋 ↑ 𝑘 ) = 0 ) |
| 137 |
136
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · 0 ) ) |
| 138 |
53
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · 0 ) = 0 ) |
| 139 |
126 138
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · 0 ) = 0 ) |
| 140 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · 0 ) = 0 ) |
| 141 |
137 140
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) = 0 ) |
| 142 |
141
|
abs00bd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) = 0 ) |
| 143 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ∈ ℂ ) |
| 144 |
143
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 145 |
126 144
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 146 |
145
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 147 |
131 142 146
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 148 |
|
df-ne |
⊢ ( 𝑋 ≠ 0 ↔ ¬ 𝑋 = 0 ) |
| 149 |
56
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 150 |
52 37 55
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 151 |
150
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( abs ‘ ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 152 |
37 55
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ∈ ℂ ) |
| 153 |
52 152
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) = ( ( abs ‘ ( 𝑘 + 1 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 154 |
35 127
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝑘 + 1 ) ) = ( 𝑘 + 1 ) ) |
| 155 |
154
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ ( 𝑘 + 1 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 156 |
151 153 155
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 157 |
149 156
|
eqled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 158 |
157
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 159 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ ℂ ) |
| 160 |
116
|
rpreccld |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℝ+ ) |
| 161 |
159 160
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℝ+ ) |
| 162 |
161
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℂ ) |
| 163 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 164 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
| 165 |
164
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℂ ) |
| 166 |
162 163 165
|
mul12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( ( 1 / ( abs ‘ 𝑋 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 167 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 168 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ℂ ) |
| 169 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
| 170 |
167 168 169
|
absdivd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) / 𝑋 ) ) = ( ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) / ( abs ‘ 𝑋 ) ) ) |
| 171 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝐴 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 172 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 173 |
171 172 168 169
|
divassd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) / 𝑋 ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑋 ↑ ( 𝑘 + 1 ) ) / 𝑋 ) ) ) |
| 174 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → 𝑘 ∈ ℂ ) |
| 175 |
|
pncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 176 |
174 10 175
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 177 |
176
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ↑ ( ( 𝑘 + 1 ) − 1 ) ) = ( 𝑋 ↑ 𝑘 ) ) |
| 178 |
21
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 179 |
178
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 180 |
168 169 179
|
expm1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ↑ ( ( 𝑘 + 1 ) − 1 ) ) = ( ( 𝑋 ↑ ( 𝑘 + 1 ) ) / 𝑋 ) ) |
| 181 |
177 180
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ↑ 𝑘 ) = ( ( 𝑋 ↑ ( 𝑘 + 1 ) ) / 𝑋 ) ) |
| 182 |
181
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑋 ↑ ( 𝑘 + 1 ) ) / 𝑋 ) ) ) |
| 183 |
173 182
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) / 𝑋 ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 184 |
183
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) / 𝑋 ) ) = ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 185 |
5
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 186 |
185
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 187 |
186
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 188 |
159 116
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ∈ ℝ+ ) |
| 189 |
188
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ≠ 0 ) |
| 190 |
165 187 189
|
divrec2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) / ( abs ‘ 𝑋 ) ) = ( ( 1 / ( abs ‘ 𝑋 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 191 |
170 184 190
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) = ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 192 |
191
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 𝑘 + 1 ) · ( ( 1 / ( abs ‘ 𝑋 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 193 |
166 192
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 194 |
158 193
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 195 |
126 194
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 196 |
148 195
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ ¬ 𝑋 = 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 197 |
121 123 147 196
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 198 |
51
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐻 ‘ 𝑘 ) ) = ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 199 |
126 198
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( abs ‘ ( 𝐻 ‘ 𝑘 ) ) = ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 200 |
34
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ) = ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 201 |
126 200
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ) = ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 202 |
197 199 201
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( abs ‘ ( 𝐻 ‘ 𝑘 ) ) ≤ ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ) ) |
| 203 |
7 9 43 57 113 119 202
|
cvgcmpce |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |