Metamath Proof Explorer


Theorem psergf

Description: The sequence of terms in the infinite sequence defining a power series for fixed X . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G=xn0Anxn
radcnv.a φA:0
psergf.x φX
Assertion psergf φGX:0

Proof

Step Hyp Ref Expression
1 pser.g G=xn0Anxn
2 radcnv.a φA:0
3 psergf.x φX
4 1 pserval XGX=m0AmXm
5 4 adantl A:0XGX=m0AmXm
6 ffvelcdm A:0m0Am
7 6 adantlr A:0Xm0Am
8 expcl Xm0Xm
9 8 adantll A:0Xm0Xm
10 7 9 mulcld A:0Xm0AmXm
11 5 10 fmpt3d A:0XGX:0
12 2 3 11 syl2anc φGX:0