Metamath Proof Explorer


Theorem pserval

Description: Value of the function G that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypothesis pser.g G=xn0Anxn
Assertion pserval XGX=m0AmXm

Proof

Step Hyp Ref Expression
1 pser.g G=xn0Anxn
2 oveq1 y=Xym=Xm
3 2 oveq2d y=XAmym=AmXm
4 3 mpteq2dv y=Xm0Amym=m0AmXm
5 fveq2 n=mAn=Am
6 oveq2 n=mxn=xm
7 5 6 oveq12d n=mAnxn=Amxm
8 7 cbvmptv n0Anxn=m0Amxm
9 oveq1 x=yxm=ym
10 9 oveq2d x=yAmxm=Amym
11 10 mpteq2dv x=ym0Amxm=m0Amym
12 8 11 eqtrid x=yn0Anxn=m0Amym
13 12 cbvmptv xn0Anxn=ym0Amym
14 1 13 eqtri G=ym0Amym
15 nn0ex 0V
16 15 mptex m0AmXmV
17 4 14 16 fvmpt XGX=m0AmXm