Metamath Proof Explorer


Theorem pserval

Description: Value of the function G that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypothesis pser.g G = x n 0 A n x n
Assertion pserval X G X = m 0 A m X m

Proof

Step Hyp Ref Expression
1 pser.g G = x n 0 A n x n
2 oveq1 y = X y m = X m
3 2 oveq2d y = X A m y m = A m X m
4 3 mpteq2dv y = X m 0 A m y m = m 0 A m X m
5 fveq2 n = m A n = A m
6 oveq2 n = m x n = x m
7 5 6 oveq12d n = m A n x n = A m x m
8 7 cbvmptv n 0 A n x n = m 0 A m x m
9 oveq1 x = y x m = y m
10 9 oveq2d x = y A m x m = A m y m
11 10 mpteq2dv x = y m 0 A m x m = m 0 A m y m
12 8 11 eqtrid x = y n 0 A n x n = m 0 A m y m
13 12 cbvmptv x n 0 A n x n = y m 0 A m y m
14 1 13 eqtri G = y m 0 A m y m
15 nn0ex 0 V
16 15 mptex m 0 A m X m V
17 4 14 16 fvmpt X G X = m 0 A m X m