| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pser.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑚 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) |
| 4 |
3
|
mpteq2dv |
⊢ ( 𝑦 = 𝑋 → ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑚 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑚 ) ) |
| 7 |
5 6
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) |
| 8 |
7
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑚 ) = ( 𝑦 ↑ 𝑚 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) |
| 11 |
10
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
| 12 |
8 11
|
eqtrid |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
| 13 |
12
|
cbvmptv |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
| 14 |
1 13
|
eqtri |
⊢ 𝐺 = ( 𝑦 ∈ ℂ ↦ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
| 15 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 16 |
15
|
mptex |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ∈ V |
| 17 |
4 14 16
|
fvmpt |
⊢ ( 𝑋 ∈ ℂ → ( 𝐺 ‘ 𝑋 ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |