Metamath Proof Explorer


Theorem psercnlem2

Description: Lemma for psercn . (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses pserf.g G=xn0Anxn
pserf.f F=ySj0Gyj
pserf.a φA:0
pserf.r R=supr|seq0+Grdom*<
psercn.s S=abs-10R
psercnlem2.i φaSM+a<MM<R
Assertion psercnlem2 φaSa0ballabsM0ballabsMabs-10Mabs-10MS

Proof

Step Hyp Ref Expression
1 pserf.g G=xn0Anxn
2 pserf.f F=ySj0Gyj
3 pserf.a φA:0
4 pserf.r R=supr|seq0+Grdom*<
5 psercn.s S=abs-10R
6 psercnlem2.i φaSM+a<MM<R
7 cnvimass abs-10Rdomabs
8 absf abs:
9 8 fdmi domabs=
10 7 9 sseqtri abs-10R
11 5 10 eqsstri S
12 11 a1i φS
13 12 sselda φaSa
14 13 abscld φaSa
15 13 absge0d φaS0a
16 6 simp2d φaSa<M
17 0re 0
18 6 simp1d φaSM+
19 18 rpxrd φaSM*
20 elico2 0M*a0Ma0aa<M
21 17 19 20 sylancr φaSa0Ma0aa<M
22 14 15 16 21 mpbir3and φaSa0M
23 ffn abs:absFn
24 elpreima absFnaabs-10Maa0M
25 8 23 24 mp2b aabs-10Maa0M
26 13 22 25 sylanbrc φaSaabs-10M
27 eqid abs=abs
28 27 cnbl0 M*abs-10M=0ballabsM
29 19 28 syl φaSabs-10M=0ballabsM
30 26 29 eleqtrd φaSa0ballabsM
31 icossicc 0M0M
32 imass2 0M0Mabs-10Mabs-10M
33 31 32 mp1i φaSabs-10Mabs-10M
34 29 33 eqsstrrd φaS0ballabsMabs-10M
35 iccssxr 0+∞*
36 1 3 4 radcnvcl φR0+∞
37 36 adantr φaSR0+∞
38 35 37 sselid φaSR*
39 6 simp3d φaSM<R
40 df-ico .=u*,v*w*|uww<v
41 df-icc .=u*,v*w*|uwwv
42 xrlelttr z*M*R*zMM<Rz<R
43 40 41 42 ixxss2 R*M<R0M0R
44 38 39 43 syl2anc φaS0M0R
45 imass2 0M0Rabs-10Mabs-10R
46 44 45 syl φaSabs-10Mabs-10R
47 46 5 sseqtrrdi φaSabs-10MS
48 30 34 47 3jca φaSa0ballabsM0ballabsMabs-10Mabs-10MS