Description: Lemma for psercn . (Contributed by Mario Carneiro, 18-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pserf.g | |
|
pserf.f | |
||
pserf.a | |
||
pserf.r | |
||
psercn.s | |
||
psercnlem2.i | |
||
Assertion | psercnlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pserf.g | |
|
2 | pserf.f | |
|
3 | pserf.a | |
|
4 | pserf.r | |
|
5 | psercn.s | |
|
6 | psercnlem2.i | |
|
7 | cnvimass | |
|
8 | absf | |
|
9 | 8 | fdmi | |
10 | 7 9 | sseqtri | |
11 | 5 10 | eqsstri | |
12 | 11 | a1i | |
13 | 12 | sselda | |
14 | 13 | abscld | |
15 | 13 | absge0d | |
16 | 6 | simp2d | |
17 | 0re | |
|
18 | 6 | simp1d | |
19 | 18 | rpxrd | |
20 | elico2 | |
|
21 | 17 19 20 | sylancr | |
22 | 14 15 16 21 | mpbir3and | |
23 | ffn | |
|
24 | elpreima | |
|
25 | 8 23 24 | mp2b | |
26 | 13 22 25 | sylanbrc | |
27 | eqid | |
|
28 | 27 | cnbl0 | |
29 | 19 28 | syl | |
30 | 26 29 | eleqtrd | |
31 | icossicc | |
|
32 | imass2 | |
|
33 | 31 32 | mp1i | |
34 | 29 33 | eqsstrrd | |
35 | iccssxr | |
|
36 | 1 3 4 | radcnvcl | |
37 | 36 | adantr | |
38 | 35 37 | sselid | |
39 | 6 | simp3d | |
40 | df-ico | |
|
41 | df-icc | |
|
42 | xrlelttr | |
|
43 | 40 41 42 | ixxss2 | |
44 | 38 39 43 | syl2anc | |
45 | imass2 | |
|
46 | 44 45 | syl | |
47 | 46 5 | sseqtrrdi | |
48 | 30 34 47 | 3jca | |