Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
|
2 |
|
pserf.f |
|
3 |
|
pserf.a |
|
4 |
|
pserf.r |
|
5 |
|
psercn.s |
|
6 |
|
psercn.m |
|
7 |
|
pserdv.b |
|
8 |
|
dvfcn |
|
9 |
|
ssidd |
|
10 |
1 2 3 4 5 6
|
psercn |
|
11 |
|
cncff |
|
12 |
10 11
|
syl |
|
13 |
|
cnvimass |
|
14 |
|
absf |
|
15 |
14
|
fdmi |
|
16 |
13 15
|
sseqtri |
|
17 |
5 16
|
eqsstri |
|
18 |
17
|
a1i |
|
19 |
9 12 18
|
dvbss |
|
20 |
|
ssidd |
|
21 |
12
|
adantr |
|
22 |
17
|
a1i |
|
23 |
|
cnxmet |
|
24 |
|
0cnd |
|
25 |
18
|
sselda |
|
26 |
25
|
abscld |
|
27 |
1 2 3 4 5 6
|
psercnlem1 |
|
28 |
27
|
simp1d |
|
29 |
28
|
rpred |
|
30 |
26 29
|
readdcld |
|
31 |
|
0red |
|
32 |
25
|
absge0d |
|
33 |
26 28
|
ltaddrpd |
|
34 |
31 26 30 32 33
|
lelttrd |
|
35 |
30 34
|
elrpd |
|
36 |
35
|
rphalfcld |
|
37 |
36
|
rpxrd |
|
38 |
|
blssm |
|
39 |
23 24 37 38
|
mp3an2i |
|
40 |
7 39
|
eqsstrid |
|
41 |
|
eqid |
|
42 |
41
|
cnfldtopon |
|
43 |
42
|
toponrestid |
|
44 |
41 43
|
dvres |
|
45 |
20 21 22 40 44
|
syl22anc |
|
46 |
|
resss |
|
47 |
45 46
|
eqsstrdi |
|
48 |
|
dmss |
|
49 |
47 48
|
syl |
|
50 |
1 2 3 4 5 6
|
pserdvlem1 |
|
51 |
1 2 3 4 5 50
|
psercnlem2 |
|
52 |
51
|
simp1d |
|
53 |
52 7
|
eleqtrrdi |
|
54 |
1 2 3 4 5 6 7
|
pserdvlem2 |
|
55 |
54
|
dmeqd |
|
56 |
|
dmmptg |
|
57 |
|
sumex |
|
58 |
57
|
a1i |
|
59 |
56 58
|
mprg |
|
60 |
55 59
|
eqtrdi |
|
61 |
53 60
|
eleqtrrd |
|
62 |
49 61
|
sseldd |
|
63 |
19 62
|
eqelssd |
|
64 |
63
|
feq2d |
|
65 |
8 64
|
mpbii |
|
66 |
65
|
feqmptd |
|
67 |
|
ffun |
|
68 |
8 67
|
mp1i |
|
69 |
|
funssfv |
|
70 |
68 47 61 69
|
syl3anc |
|
71 |
54
|
fveq1d |
|
72 |
|
oveq1 |
|
73 |
72
|
oveq2d |
|
74 |
73
|
sumeq2sdv |
|
75 |
|
eqid |
|
76 |
|
sumex |
|
77 |
74 75 76
|
fvmpt |
|
78 |
53 77
|
syl |
|
79 |
70 71 78
|
3eqtrd |
|
80 |
79
|
mpteq2dva |
|
81 |
66 80
|
eqtrd |
|
82 |
|
oveq1 |
|
83 |
82
|
oveq2d |
|
84 |
83
|
sumeq2sdv |
|
85 |
84
|
cbvmptv |
|
86 |
81 85
|
eqtrdi |
|