| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pserf.g |
|
| 2 |
|
pserf.f |
|
| 3 |
|
pserf.a |
|
| 4 |
|
pserf.r |
|
| 5 |
|
psercn.s |
|
| 6 |
|
psercn.m |
|
| 7 |
|
pserdv.b |
|
| 8 |
1 2 3 4 5 6 7
|
pserdv |
|
| 9 |
|
nn0uz |
|
| 10 |
|
nnuz |
|
| 11 |
|
1e0p1 |
|
| 12 |
11
|
fveq2i |
|
| 13 |
10 12
|
eqtri |
|
| 14 |
|
id |
|
| 15 |
|
fveq2 |
|
| 16 |
14 15
|
oveq12d |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
16 18
|
oveq12d |
|
| 20 |
|
1zzd |
|
| 21 |
|
0zd |
|
| 22 |
|
nncn |
|
| 23 |
22
|
adantl |
|
| 24 |
3
|
adantr |
|
| 25 |
|
nnnn0 |
|
| 26 |
|
ffvelcdm |
|
| 27 |
24 25 26
|
syl2an |
|
| 28 |
23 27
|
mulcld |
|
| 29 |
|
cnvimass |
|
| 30 |
|
absf |
|
| 31 |
30
|
fdmi |
|
| 32 |
29 31
|
sseqtri |
|
| 33 |
5 32
|
eqsstri |
|
| 34 |
33
|
a1i |
|
| 35 |
34
|
sselda |
|
| 36 |
|
nnm1nn0 |
|
| 37 |
|
expcl |
|
| 38 |
35 36 37
|
syl2an |
|
| 39 |
28 38
|
mulcld |
|
| 40 |
9 13 19 20 21 39
|
isumshft |
|
| 41 |
|
ax-1cn |
|
| 42 |
|
nn0cn |
|
| 43 |
42
|
adantl |
|
| 44 |
|
addcom |
|
| 45 |
41 43 44
|
sylancr |
|
| 46 |
45
|
fveq2d |
|
| 47 |
45 46
|
oveq12d |
|
| 48 |
|
pncan2 |
|
| 49 |
41 43 48
|
sylancr |
|
| 50 |
49
|
oveq2d |
|
| 51 |
47 50
|
oveq12d |
|
| 52 |
51
|
sumeq2dv |
|
| 53 |
40 52
|
eqtr2d |
|
| 54 |
53
|
mpteq2dva |
|
| 55 |
8 54
|
eqtrd |
|