| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pserf.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 2 |
|
pserf.f |
|- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
| 3 |
|
pserf.a |
|- ( ph -> A : NN0 --> CC ) |
| 4 |
|
pserf.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
| 5 |
|
psercn.s |
|- S = ( `' abs " ( 0 [,) R ) ) |
| 6 |
|
psercn.m |
|- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
| 7 |
|
pserdv.b |
|- B = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) |
| 8 |
1 2 3 4 5 6 7
|
pserdv |
|- ( ph -> ( CC _D F ) = ( y e. S |-> sum_ m e. NN0 ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) ) ) |
| 9 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 10 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 11 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 12 |
11
|
fveq2i |
|- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
| 13 |
10 12
|
eqtri |
|- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 14 |
|
id |
|- ( k = ( 1 + m ) -> k = ( 1 + m ) ) |
| 15 |
|
fveq2 |
|- ( k = ( 1 + m ) -> ( A ` k ) = ( A ` ( 1 + m ) ) ) |
| 16 |
14 15
|
oveq12d |
|- ( k = ( 1 + m ) -> ( k x. ( A ` k ) ) = ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) ) |
| 17 |
|
oveq1 |
|- ( k = ( 1 + m ) -> ( k - 1 ) = ( ( 1 + m ) - 1 ) ) |
| 18 |
17
|
oveq2d |
|- ( k = ( 1 + m ) -> ( y ^ ( k - 1 ) ) = ( y ^ ( ( 1 + m ) - 1 ) ) ) |
| 19 |
16 18
|
oveq12d |
|- ( k = ( 1 + m ) -> ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) = ( ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) x. ( y ^ ( ( 1 + m ) - 1 ) ) ) ) |
| 20 |
|
1zzd |
|- ( ( ph /\ y e. S ) -> 1 e. ZZ ) |
| 21 |
|
0zd |
|- ( ( ph /\ y e. S ) -> 0 e. ZZ ) |
| 22 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 23 |
22
|
adantl |
|- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> k e. CC ) |
| 24 |
3
|
adantr |
|- ( ( ph /\ y e. S ) -> A : NN0 --> CC ) |
| 25 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 26 |
|
ffvelcdm |
|- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 27 |
24 25 26
|
syl2an |
|- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> ( A ` k ) e. CC ) |
| 28 |
23 27
|
mulcld |
|- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> ( k x. ( A ` k ) ) e. CC ) |
| 29 |
|
cnvimass |
|- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
| 30 |
|
absf |
|- abs : CC --> RR |
| 31 |
30
|
fdmi |
|- dom abs = CC |
| 32 |
29 31
|
sseqtri |
|- ( `' abs " ( 0 [,) R ) ) C_ CC |
| 33 |
5 32
|
eqsstri |
|- S C_ CC |
| 34 |
33
|
a1i |
|- ( ph -> S C_ CC ) |
| 35 |
34
|
sselda |
|- ( ( ph /\ y e. S ) -> y e. CC ) |
| 36 |
|
nnm1nn0 |
|- ( k e. NN -> ( k - 1 ) e. NN0 ) |
| 37 |
|
expcl |
|- ( ( y e. CC /\ ( k - 1 ) e. NN0 ) -> ( y ^ ( k - 1 ) ) e. CC ) |
| 38 |
35 36 37
|
syl2an |
|- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> ( y ^ ( k - 1 ) ) e. CC ) |
| 39 |
28 38
|
mulcld |
|- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) e. CC ) |
| 40 |
9 13 19 20 21 39
|
isumshft |
|- ( ( ph /\ y e. S ) -> sum_ k e. NN ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) = sum_ m e. NN0 ( ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) x. ( y ^ ( ( 1 + m ) - 1 ) ) ) ) |
| 41 |
|
ax-1cn |
|- 1 e. CC |
| 42 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
| 43 |
42
|
adantl |
|- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> m e. CC ) |
| 44 |
|
addcom |
|- ( ( 1 e. CC /\ m e. CC ) -> ( 1 + m ) = ( m + 1 ) ) |
| 45 |
41 43 44
|
sylancr |
|- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( 1 + m ) = ( m + 1 ) ) |
| 46 |
45
|
fveq2d |
|- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( A ` ( 1 + m ) ) = ( A ` ( m + 1 ) ) ) |
| 47 |
45 46
|
oveq12d |
|- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) = ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) ) |
| 48 |
|
pncan2 |
|- ( ( 1 e. CC /\ m e. CC ) -> ( ( 1 + m ) - 1 ) = m ) |
| 49 |
41 43 48
|
sylancr |
|- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( ( 1 + m ) - 1 ) = m ) |
| 50 |
49
|
oveq2d |
|- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( y ^ ( ( 1 + m ) - 1 ) ) = ( y ^ m ) ) |
| 51 |
47 50
|
oveq12d |
|- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) x. ( y ^ ( ( 1 + m ) - 1 ) ) ) = ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) ) |
| 52 |
51
|
sumeq2dv |
|- ( ( ph /\ y e. S ) -> sum_ m e. NN0 ( ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) x. ( y ^ ( ( 1 + m ) - 1 ) ) ) = sum_ m e. NN0 ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) ) |
| 53 |
40 52
|
eqtr2d |
|- ( ( ph /\ y e. S ) -> sum_ m e. NN0 ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) = sum_ k e. NN ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) |
| 54 |
53
|
mpteq2dva |
|- ( ph -> ( y e. S |-> sum_ m e. NN0 ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) ) = ( y e. S |-> sum_ k e. NN ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |
| 55 |
8 54
|
eqtrd |
|- ( ph -> ( CC _D F ) = ( y e. S |-> sum_ k e. NN ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |