Metamath Proof Explorer


Theorem abelthlem1

Description: Lemma for abelth . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Hypotheses abelth.1 φ A : 0
abelth.2 φ seq 0 + A dom
Assertion abelthlem1 φ 1 sup r | seq 0 + z n 0 A n z n r dom * <

Proof

Step Hyp Ref Expression
1 abelth.1 φ A : 0
2 abelth.2 φ seq 0 + A dom
3 abs1 1 = 1
4 eqid z n 0 A n z n = z n 0 A n z n
5 eqid sup r | seq 0 + z n 0 A n z n r dom * < = sup r | seq 0 + z n 0 A n z n r dom * <
6 1cnd φ 1
7 1 feqmptd φ A = n 0 A n
8 1 ffvelrnda φ n 0 A n
9 8 mulid1d φ n 0 A n 1 = A n
10 9 mpteq2dva φ n 0 A n 1 = n 0 A n
11 7 10 eqtr4d φ A = n 0 A n 1
12 ax-1cn 1
13 oveq1 z = 1 z n = 1 n
14 nn0z n 0 n
15 1exp n 1 n = 1
16 14 15 syl n 0 1 n = 1
17 13 16 sylan9eq z = 1 n 0 z n = 1
18 17 oveq2d z = 1 n 0 A n z n = A n 1
19 18 mpteq2dva z = 1 n 0 A n z n = n 0 A n 1
20 nn0ex 0 V
21 20 mptex n 0 A n 1 V
22 19 4 21 fvmpt 1 z n 0 A n z n 1 = n 0 A n 1
23 12 22 ax-mp z n 0 A n z n 1 = n 0 A n 1
24 11 23 eqtr4di φ A = z n 0 A n z n 1
25 24 seqeq3d φ seq 0 + A = seq 0 + z n 0 A n z n 1
26 25 2 eqeltrrd φ seq 0 + z n 0 A n z n 1 dom
27 4 1 5 6 26 radcnvle φ 1 sup r | seq 0 + z n 0 A n z n r dom * <
28 3 27 eqbrtrrid φ 1 sup r | seq 0 + z n 0 A n z n r dom * <