Metamath Proof Explorer


Theorem abelthlem1

Description: Lemma for abelth . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Hypotheses abelth.1 φA:0
abelth.2 φseq0+Adom
Assertion abelthlem1 φ1supr|seq0+zn0Anznrdom*<

Proof

Step Hyp Ref Expression
1 abelth.1 φA:0
2 abelth.2 φseq0+Adom
3 abs1 1=1
4 eqid zn0Anzn=zn0Anzn
5 eqid supr|seq0+zn0Anznrdom*<=supr|seq0+zn0Anznrdom*<
6 1cnd φ1
7 1 feqmptd φA=n0An
8 1 ffvelcdmda φn0An
9 8 mulridd φn0An1=An
10 9 mpteq2dva φn0An1=n0An
11 7 10 eqtr4d φA=n0An1
12 ax-1cn 1
13 oveq1 z=1zn=1n
14 nn0z n0n
15 1exp n1n=1
16 14 15 syl n01n=1
17 13 16 sylan9eq z=1n0zn=1
18 17 oveq2d z=1n0Anzn=An1
19 18 mpteq2dva z=1n0Anzn=n0An1
20 nn0ex 0V
21 20 mptex n0An1V
22 19 4 21 fvmpt 1zn0Anzn1=n0An1
23 12 22 ax-mp zn0Anzn1=n0An1
24 11 23 eqtr4di φA=zn0Anzn1
25 24 seqeq3d φseq0+A=seq0+zn0Anzn1
26 25 2 eqeltrrd φseq0+zn0Anzn1dom
27 4 1 5 6 26 radcnvle φ1supr|seq0+zn0Anznrdom*<
28 3 27 eqbrtrrid φ1supr|seq0+zn0Anznrdom*<