Description: Lemma for abelth . (Contributed by Mario Carneiro, 1-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abelth.1 | |
|
abelth.2 | |
||
Assertion | abelthlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abelth.1 | |
|
2 | abelth.2 | |
|
3 | abs1 | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1cnd | |
|
7 | 1 | feqmptd | |
8 | 1 | ffvelcdmda | |
9 | 8 | mulridd | |
10 | 9 | mpteq2dva | |
11 | 7 10 | eqtr4d | |
12 | ax-1cn | |
|
13 | oveq1 | |
|
14 | nn0z | |
|
15 | 1exp | |
|
16 | 14 15 | syl | |
17 | 13 16 | sylan9eq | |
18 | 17 | oveq2d | |
19 | 18 | mpteq2dva | |
20 | nn0ex | |
|
21 | 20 | mptex | |
22 | 19 4 21 | fvmpt | |
23 | 12 22 | ax-mp | |
24 | 11 23 | eqtr4di | |
25 | 24 | seqeq3d | |
26 | 25 2 | eqeltrrd | |
27 | 4 1 5 6 26 | radcnvle | |
28 | 3 27 | eqbrtrrid | |