| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pserf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 2 |
|
pserf.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
| 3 |
|
pserf.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 4 |
|
pserf.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 5 |
|
psercn.s |
⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
| 6 |
|
psercn.m |
⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) |
| 7 |
|
pserdv.b |
⊢ 𝐵 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) |
| 8 |
|
dvfcn |
⊢ ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ |
| 9 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 10 |
1 2 3 4 5 6
|
psercn |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |
| 11 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝑆 –cn→ ℂ ) → 𝐹 : 𝑆 ⟶ ℂ ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 13 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs |
| 14 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 15 |
14
|
fdmi |
⊢ dom abs = ℂ |
| 16 |
13 15
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
| 17 |
5 16
|
eqsstri |
⊢ 𝑆 ⊆ ℂ |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 19 |
9 12 18
|
dvbss |
⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) ⊆ 𝑆 ) |
| 20 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ℂ ⊆ ℂ ) |
| 21 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
| 22 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑆 ⊆ ℂ ) |
| 23 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 24 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℂ ) |
| 25 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
| 26 |
25
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 27 |
1 2 3 4 5 6
|
psercnlem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
| 28 |
27
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
| 29 |
28
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 30 |
26 29
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 𝑀 ) ∈ ℝ ) |
| 31 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℝ ) |
| 32 |
25
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ ( abs ‘ 𝑎 ) ) |
| 33 |
26 28
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 𝑀 ) ) |
| 34 |
31 26 30 32 33
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 < ( ( abs ‘ 𝑎 ) + 𝑀 ) ) |
| 35 |
30 34
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 𝑀 ) ∈ ℝ+ ) |
| 36 |
35
|
rphalfcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ) |
| 37 |
36
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) |
| 38 |
|
blssm |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ℂ ) |
| 39 |
23 24 37 38
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ℂ ) |
| 40 |
7 39
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ⊆ ℂ ) |
| 41 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 42 |
41
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 43 |
42
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 44 |
41 43
|
dvres |
⊢ ( ( ( ℂ ⊆ ℂ ∧ 𝐹 : 𝑆 ⟶ ℂ ) ∧ ( 𝑆 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
| 45 |
20 21 22 40 44
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
| 46 |
|
resss |
⊢ ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ⊆ ( ℂ D 𝐹 ) |
| 47 |
45 46
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ ( ℂ D 𝐹 ) ) |
| 48 |
|
dmss |
⊢ ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ ( ℂ D 𝐹 ) → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ dom ( ℂ D 𝐹 ) ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ dom ( ℂ D 𝐹 ) ) |
| 50 |
1 2 3 4 5 6
|
pserdvlem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) ) |
| 51 |
1 2 3 4 5 50
|
psercnlem2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ∧ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ⊆ 𝑆 ) ) |
| 52 |
51
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
| 53 |
52 7
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝐵 ) |
| 54 |
1 2 3 4 5 6 7
|
pserdvlem2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 55 |
54
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = dom ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 56 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ 𝐵 Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ V → dom ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) = 𝐵 ) |
| 57 |
|
sumex |
⊢ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ V |
| 58 |
57
|
a1i |
⊢ ( 𝑦 ∈ 𝐵 → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ V ) |
| 59 |
56 58
|
mprg |
⊢ dom ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) = 𝐵 |
| 60 |
55 59
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = 𝐵 ) |
| 61 |
53 60
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ) |
| 62 |
49 61
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ dom ( ℂ D 𝐹 ) ) |
| 63 |
19 62
|
eqelssd |
⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) = 𝑆 ) |
| 64 |
63
|
feq2d |
⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ ↔ ( ℂ D 𝐹 ) : 𝑆 ⟶ ℂ ) ) |
| 65 |
8 64
|
mpbii |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) : 𝑆 ⟶ ℂ ) |
| 66 |
65
|
feqmptd |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑎 ∈ 𝑆 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑎 ) ) ) |
| 67 |
|
ffun |
⊢ ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ → Fun ( ℂ D 𝐹 ) ) |
| 68 |
8 67
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → Fun ( ℂ D 𝐹 ) ) |
| 69 |
|
funssfv |
⊢ ( ( Fun ( ℂ D 𝐹 ) ∧ ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ ( ℂ D 𝐹 ) ∧ 𝑎 ∈ dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ) → ( ( ℂ D 𝐹 ) ‘ 𝑎 ) = ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ‘ 𝑎 ) ) |
| 70 |
68 47 61 69
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ℂ D 𝐹 ) ‘ 𝑎 ) = ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ‘ 𝑎 ) ) |
| 71 |
54
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ‘ 𝑎 ) = ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑎 ) ) |
| 72 |
|
oveq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ↑ 𝑘 ) = ( 𝑎 ↑ 𝑘 ) ) |
| 73 |
72
|
oveq2d |
⊢ ( 𝑦 = 𝑎 → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 74 |
73
|
sumeq2sdv |
⊢ ( 𝑦 = 𝑎 → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 75 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 76 |
|
sumex |
⊢ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ∈ V |
| 77 |
74 75 76
|
fvmpt |
⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑎 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 78 |
53 77
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑎 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 79 |
70 71 78
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ℂ D 𝐹 ) ‘ 𝑎 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 80 |
79
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑆 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑎 ) ) = ( 𝑎 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) ) |
| 81 |
66 80
|
eqtrd |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑎 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) ) |
| 82 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 ↑ 𝑘 ) = ( 𝑦 ↑ 𝑘 ) ) |
| 83 |
82
|
oveq2d |
⊢ ( 𝑎 = 𝑦 → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 84 |
83
|
sumeq2sdv |
⊢ ( 𝑎 = 𝑦 → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 85 |
84
|
cbvmptv |
⊢ ( 𝑎 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 86 |
81 85
|
eqtrdi |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |