| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pserf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 2 |
|
pserf.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
| 3 |
|
pserf.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 4 |
|
pserf.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 5 |
|
psercn.s |
⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
| 6 |
|
psercn.m |
⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) |
| 7 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs |
| 8 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 9 |
8
|
fdmi |
⊢ dom abs = ℂ |
| 10 |
7 9
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
| 11 |
5 10
|
eqsstri |
⊢ 𝑆 ⊆ ℂ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 13 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
| 14 |
13
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 15 |
1 2 3 4 5 6
|
psercnlem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
| 16 |
15
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
| 17 |
16
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 18 |
14 17
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 𝑀 ) ∈ ℝ ) |
| 19 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℝ ) |
| 20 |
13
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ ( abs ‘ 𝑎 ) ) |
| 21 |
14 16
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 𝑀 ) ) |
| 22 |
19 14 18 20 21
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 < ( ( abs ‘ 𝑎 ) + 𝑀 ) ) |
| 23 |
18 22
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 𝑀 ) ∈ ℝ+ ) |
| 24 |
23
|
rphalfcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ) |
| 25 |
15
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 ) |
| 26 |
|
avglt1 |
⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
| 27 |
14 17 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
| 28 |
25 27
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) |
| 29 |
18
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ ) |
| 30 |
29
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) |
| 31 |
17
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
| 32 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 33 |
1 3 4
|
radcnvcl |
⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 34 |
32 33
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
| 36 |
|
avglt2 |
⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) ) |
| 37 |
14 17 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) ) |
| 38 |
25 37
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) |
| 39 |
15
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
| 40 |
30 31 35 38 39
|
xrlttrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) |
| 41 |
24 28 40
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) ) |