| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltadd2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 𝐴 ) < ( 𝐴 + 𝐵 ) ) ) |
| 2 |
1
|
3anidm13 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 𝐴 ) < ( 𝐴 + 𝐵 ) ) ) |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 4 |
3
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 5 |
|
times2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 2 ) = ( 𝐴 + 𝐴 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 2 ) = ( 𝐴 + 𝐴 ) ) |
| 7 |
6
|
breq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 2 ) < ( 𝐴 + 𝐵 ) ↔ ( 𝐴 + 𝐴 ) < ( 𝐴 + 𝐵 ) ) ) |
| 8 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 9 |
|
2re |
⊢ 2 ∈ ℝ |
| 10 |
|
2pos |
⊢ 0 < 2 |
| 11 |
9 10
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 12 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 13 |
|
ltmuldiv |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝐴 · 2 ) < ( 𝐴 + 𝐵 ) ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 14 |
3 8 12 13
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 2 ) < ( 𝐴 + 𝐵 ) ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 15 |
2 7 14
|
3bitr2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |