Metamath Proof Explorer


Theorem times2

Description: A number times 2. (Contributed by NM, 16-Oct-2007)

Ref Expression
Assertion times2 ( 𝐴 ∈ ℂ → ( 𝐴 · 2 ) = ( 𝐴 + 𝐴 ) )

Proof

Step Hyp Ref Expression
1 2cn 2 ∈ ℂ
2 mulcom ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝐴 · 2 ) = ( 2 · 𝐴 ) )
3 1 2 mpan2 ( 𝐴 ∈ ℂ → ( 𝐴 · 2 ) = ( 2 · 𝐴 ) )
4 2times ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) )
5 3 4 eqtrd ( 𝐴 ∈ ℂ → ( 𝐴 · 2 ) = ( 𝐴 + 𝐴 ) )