| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 2 |
|
0zd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ∈ ℤ ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 = 0 ↔ 𝑛 = 0 ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 1 / 𝑘 ) = ( 1 / 𝑛 ) ) |
| 5 |
3 4
|
ifbieq2d |
⊢ ( 𝑘 = 𝑛 → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ 𝑛 ) ) |
| 7 |
5 6
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 8 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 9 |
|
ovex |
⊢ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ∈ V |
| 10 |
7 8 9
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 12 |
|
0cnd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → 0 ∈ ℂ ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 14 |
|
elnn0 |
⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ) |
| 15 |
13 14
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ) |
| 16 |
15
|
ord |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ¬ 𝑛 ∈ ℕ → 𝑛 = 0 ) ) |
| 17 |
16
|
con1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ¬ 𝑛 = 0 → 𝑛 ∈ ℕ ) ) |
| 18 |
17
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → 𝑛 ∈ ℕ ) |
| 19 |
18
|
nnrecred |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 20 |
19
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 21 |
12 20
|
ifclda |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ∈ ℂ ) |
| 22 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑛 ) ∈ ℂ ) |
| 23 |
22
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑛 ) ∈ ℂ ) |
| 24 |
21 23
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ∈ ℂ ) |
| 25 |
|
logtayllem |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 26 |
1 2 11 24 25
|
isumclim2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ⇝ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 27 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) |
| 28 |
|
0cn |
⊢ 0 ∈ ℂ |
| 29 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 30 |
29
|
cnmetdval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝐴 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝐴 − 0 ) ) ) |
| 31 |
27 28 30
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝐴 − 0 ) ) ) |
| 32 |
|
subid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 34 |
33
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 − 0 ) ) = ( abs ‘ 𝐴 ) ) |
| 35 |
31 34
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ( abs ∘ − ) 0 ) = ( abs ‘ 𝐴 ) ) |
| 36 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) |
| 37 |
35 36
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ( abs ∘ − ) 0 ) < 1 ) |
| 38 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 39 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 40 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ) → ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ( abs ∘ − ) 0 ) < 1 ) ) |
| 41 |
38 39 40
|
mpanl12 |
⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ( abs ∘ − ) 0 ) < 1 ) ) |
| 42 |
28 27 41
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ( abs ∘ − ) 0 ) < 1 ) ) |
| 43 |
37 42
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 44 |
|
tru |
⊢ ⊤ |
| 45 |
|
eqid |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 46 |
|
0cnd |
⊢ ( ⊤ → 0 ∈ ℂ ) |
| 47 |
39
|
a1i |
⊢ ( ⊤ → 1 ∈ ℝ* ) |
| 48 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 49 |
|
blssm |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) |
| 50 |
38 28 39 49
|
mp3an |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
| 51 |
50
|
sseli |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑦 ∈ ℂ ) |
| 52 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 − 𝑦 ) ∈ ℂ ) |
| 53 |
48 51 52
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 − 𝑦 ) ∈ ℂ ) |
| 54 |
51
|
abscld |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
| 55 |
29
|
cnmetdval |
⊢ ( ( 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑦 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑦 − 0 ) ) ) |
| 56 |
51 28 55
|
sylancl |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑦 − 0 ) ) ) |
| 57 |
51
|
subid1d |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 − 0 ) = 𝑦 ) |
| 58 |
57
|
fveq2d |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( 𝑦 − 0 ) ) = ( abs ‘ 𝑦 ) ) |
| 59 |
56 58
|
eqtrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑦 ) ) |
| 60 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑦 ( abs ∘ − ) 0 ) < 1 ) ) |
| 61 |
38 39 60
|
mpanl12 |
⊢ ( ( 0 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑦 ( abs ∘ − ) 0 ) < 1 ) ) |
| 62 |
28 51 61
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑦 ( abs ∘ − ) 0 ) < 1 ) ) |
| 63 |
62
|
ibi |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 ( abs ∘ − ) 0 ) < 1 ) |
| 64 |
59 63
|
eqbrtrrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) < 1 ) |
| 65 |
54 64
|
gtned |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 1 ≠ ( abs ‘ 𝑦 ) ) |
| 66 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 67 |
|
fveq2 |
⊢ ( 1 = 𝑦 → ( abs ‘ 1 ) = ( abs ‘ 𝑦 ) ) |
| 68 |
66 67
|
eqtr3id |
⊢ ( 1 = 𝑦 → 1 = ( abs ‘ 𝑦 ) ) |
| 69 |
68
|
necon3i |
⊢ ( 1 ≠ ( abs ‘ 𝑦 ) → 1 ≠ 𝑦 ) |
| 70 |
65 69
|
syl |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 1 ≠ 𝑦 ) |
| 71 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 1 − 𝑦 ) = 0 ↔ 1 = 𝑦 ) ) |
| 72 |
71
|
necon3bid |
⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 1 − 𝑦 ) ≠ 0 ↔ 1 ≠ 𝑦 ) ) |
| 73 |
48 51 72
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 1 − 𝑦 ) ≠ 0 ↔ 1 ≠ 𝑦 ) ) |
| 74 |
70 73
|
mpbird |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 − 𝑦 ) ≠ 0 ) |
| 75 |
53 74
|
logcld |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( log ‘ ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 76 |
75
|
negcld |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - ( log ‘ ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 77 |
76
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → - ( log ‘ ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 78 |
77
|
fmpttd |
⊢ ( ⊤ → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ℂ ) |
| 79 |
51
|
absge0d |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 ≤ ( abs ‘ 𝑦 ) ) |
| 80 |
54
|
rexrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) ∈ ℝ* ) |
| 81 |
|
peano2re |
⊢ ( ( abs ‘ 𝑦 ) ∈ ℝ → ( ( abs ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 82 |
54 81
|
syl |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( abs ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 83 |
82
|
rehalfcld |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℝ ) |
| 84 |
83
|
rexrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℝ* ) |
| 85 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 86 |
|
eqeq1 |
⊢ ( 𝑚 = 𝑗 → ( 𝑚 = 0 ↔ 𝑗 = 0 ) ) |
| 87 |
|
oveq2 |
⊢ ( 𝑚 = 𝑗 → ( 1 / 𝑚 ) = ( 1 / 𝑗 ) ) |
| 88 |
86 87
|
ifbieq2d |
⊢ ( 𝑚 = 𝑗 → if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) = if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) ) |
| 89 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) |
| 90 |
|
c0ex |
⊢ 0 ∈ V |
| 91 |
|
ovex |
⊢ ( 1 / 𝑗 ) ∈ V |
| 92 |
90 91
|
ifex |
⊢ if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) ∈ V |
| 93 |
88 89 92
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) = if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) ) |
| 94 |
93
|
eqcomd |
⊢ ( 𝑗 ∈ ℕ0 → if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) = ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) ) |
| 95 |
94
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ0 → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) = ( ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
| 96 |
95
|
mpteq2ia |
⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
| 97 |
96
|
mpteq2i |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ) |
| 98 |
|
0cnd |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = 0 ) → 0 ∈ ℂ ) |
| 99 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
| 100 |
99
|
adantl |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
| 101 |
|
neqne |
⊢ ( ¬ 𝑚 = 0 → 𝑚 ≠ 0 ) |
| 102 |
|
reccl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 103 |
100 101 102
|
syl2an |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℕ0 ) ∧ ¬ 𝑚 = 0 ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 104 |
98 103
|
ifclda |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ0 ) → if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ∈ ℂ ) |
| 105 |
104
|
fmpttd |
⊢ ( ⊤ → ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) : ℕ0 ⟶ ℂ ) |
| 106 |
|
recn |
⊢ ( 𝑟 ∈ ℝ → 𝑟 ∈ ℂ ) |
| 107 |
|
oveq1 |
⊢ ( 𝑥 = 𝑟 → ( 𝑥 ↑ 𝑗 ) = ( 𝑟 ↑ 𝑗 ) ) |
| 108 |
107
|
oveq2d |
⊢ ( 𝑥 = 𝑟 → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) = ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) |
| 109 |
108
|
mpteq2dv |
⊢ ( 𝑥 = 𝑟 → ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) |
| 110 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) |
| 111 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 112 |
111
|
mptex |
⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ∈ V |
| 113 |
109 110 112
|
fvmpt |
⊢ ( 𝑟 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) |
| 114 |
106 113
|
syl |
⊢ ( 𝑟 ∈ ℝ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) |
| 115 |
114
|
eqcomd |
⊢ ( 𝑟 ∈ ℝ → ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) |
| 116 |
115
|
seqeq3d |
⊢ ( 𝑟 ∈ ℝ → seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) = seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) ) |
| 117 |
116
|
eleq1d |
⊢ ( 𝑟 ∈ ℝ → ( seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ ) ) |
| 118 |
117
|
rabbiia |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } = { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } |
| 119 |
118
|
supeq1i |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 120 |
97 105 119
|
radcnvcl |
⊢ ( ⊤ → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 121 |
85 120
|
sselid |
⊢ ( ⊤ → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 122 |
44 121
|
mp1i |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 123 |
|
1re |
⊢ 1 ∈ ℝ |
| 124 |
|
avglt1 |
⊢ ( ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( abs ‘ 𝑦 ) < ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ) |
| 125 |
54 123 124
|
sylancl |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( abs ‘ 𝑦 ) < ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ) |
| 126 |
64 125
|
mpbid |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) < ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) |
| 127 |
|
0red |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 ∈ ℝ ) |
| 128 |
127 54 83 79 126
|
lelttrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 < ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) |
| 129 |
127 83 128
|
ltled |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 ≤ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) |
| 130 |
83 129
|
absidd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) = ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) |
| 131 |
44 105
|
mp1i |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) : ℕ0 ⟶ ℂ ) |
| 132 |
83
|
recnd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℂ ) |
| 133 |
|
oveq1 |
⊢ ( 𝑥 = ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) → ( 𝑥 ↑ 𝑗 ) = ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) |
| 134 |
133
|
oveq2d |
⊢ ( 𝑥 = ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) = ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) |
| 135 |
134
|
mpteq2dv |
⊢ ( 𝑥 = ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) → ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) |
| 136 |
111
|
mptex |
⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ∈ V |
| 137 |
135 110 136
|
fvmpt |
⊢ ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) |
| 138 |
132 137
|
syl |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) |
| 139 |
138
|
seqeq3d |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ) = seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) ) |
| 140 |
|
avglt2 |
⊢ ( ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) < 1 ) ) |
| 141 |
54 123 140
|
sylancl |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) < 1 ) ) |
| 142 |
64 141
|
mpbid |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) < 1 ) |
| 143 |
130 142
|
eqbrtrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) < 1 ) |
| 144 |
|
logtayllem |
⊢ ( ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℂ ∧ ( abs ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) < 1 ) → seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) ∈ dom ⇝ ) |
| 145 |
132 143 144
|
syl2anc |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) ∈ dom ⇝ ) |
| 146 |
139 145
|
eqeltrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ) ∈ dom ⇝ ) |
| 147 |
97 131 119 132 146
|
radcnvle |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 148 |
130 147
|
eqbrtrrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 149 |
80 84 122 126 148
|
xrltletrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 150 |
|
0re |
⊢ 0 ∈ ℝ |
| 151 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 152 |
150 122 151
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 153 |
54 79 149 152
|
mpbir3and |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
| 154 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 155 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 156 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) ) |
| 157 |
154 155 156
|
mp2b |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 158 |
51 153 157
|
sylanbrc |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 159 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⊆ dom abs |
| 160 |
154
|
fdmi |
⊢ dom abs = ℂ |
| 161 |
159 160
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⊆ ℂ |
| 162 |
161
|
sseli |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → 𝑦 ∈ ℂ ) |
| 163 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑗 ) = ( 𝑦 ↑ 𝑗 ) ) |
| 164 |
163
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) = ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) |
| 165 |
164
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ) |
| 166 |
111
|
mptex |
⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ∈ V |
| 167 |
165 110 166
|
fvmpt |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ) |
| 168 |
167
|
adantr |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ) |
| 169 |
168
|
fveq1d |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ‘ 𝑛 ) ) |
| 170 |
|
eqeq1 |
⊢ ( 𝑗 = 𝑛 → ( 𝑗 = 0 ↔ 𝑛 = 0 ) ) |
| 171 |
|
oveq2 |
⊢ ( 𝑗 = 𝑛 → ( 1 / 𝑗 ) = ( 1 / 𝑛 ) ) |
| 172 |
170 171
|
ifbieq2d |
⊢ ( 𝑗 = 𝑛 → if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 173 |
|
oveq2 |
⊢ ( 𝑗 = 𝑛 → ( 𝑦 ↑ 𝑗 ) = ( 𝑦 ↑ 𝑛 ) ) |
| 174 |
172 173
|
oveq12d |
⊢ ( 𝑗 = 𝑛 → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) |
| 175 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) |
| 176 |
|
ovex |
⊢ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ∈ V |
| 177 |
174 175 176
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) |
| 178 |
177
|
adantl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) |
| 179 |
169 178
|
eqtr2d |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) ) |
| 180 |
179
|
sumeq2dv |
⊢ ( 𝑦 ∈ ℂ → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) ) |
| 181 |
162 180
|
syl |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) ) |
| 182 |
181
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) = ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) ) |
| 183 |
|
eqid |
⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) = ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
| 184 |
|
eqid |
⊢ if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑧 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑧 ) + 1 ) ) = if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑧 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑧 ) + 1 ) ) |
| 185 |
97 182 105 119 183 184
|
psercn |
⊢ ( ⊤ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ∈ ( ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) –cn→ ℂ ) ) |
| 186 |
|
cncff |
⊢ ( ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ∈ ( ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) –cn→ ℂ ) → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) : ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⟶ ℂ ) |
| 187 |
185 186
|
syl |
⊢ ( ⊤ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) : ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⟶ ℂ ) |
| 188 |
187
|
fvmptelcdm |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ∈ ℂ ) |
| 189 |
158 188
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ∈ ℂ ) |
| 190 |
189
|
fmpttd |
⊢ ( ⊤ → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ℂ ) |
| 191 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 192 |
191
|
a1i |
⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
| 193 |
75
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( log ‘ ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 194 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) ∈ V ) |
| 195 |
29
|
cnmetdval |
⊢ ( ( 1 ∈ ℂ ∧ ( 1 − 𝑦 ) ∈ ℂ ) → ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) = ( abs ‘ ( 1 − ( 1 − 𝑦 ) ) ) ) |
| 196 |
48 53 195
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) = ( abs ‘ ( 1 − ( 1 − 𝑦 ) ) ) ) |
| 197 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 − ( 1 − 𝑦 ) ) = 𝑦 ) |
| 198 |
48 51 197
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 − ( 1 − 𝑦 ) ) = 𝑦 ) |
| 199 |
198
|
fveq2d |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( 1 − ( 1 − 𝑦 ) ) ) = ( abs ‘ 𝑦 ) ) |
| 200 |
196 199
|
eqtrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) = ( abs ‘ 𝑦 ) ) |
| 201 |
200 64
|
eqbrtrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) < 1 ) |
| 202 |
|
elbl |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( ( 1 − 𝑦 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( 1 − 𝑦 ) ∈ ℂ ∧ ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) < 1 ) ) ) |
| 203 |
38 48 39 202
|
mp3an |
⊢ ( ( 1 − 𝑦 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( 1 − 𝑦 ) ∈ ℂ ∧ ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) < 1 ) ) |
| 204 |
53 201 203
|
sylanbrc |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 − 𝑦 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 205 |
204
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 1 − 𝑦 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 206 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 207 |
206
|
a1i |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → - 1 ∈ ℂ ) |
| 208 |
|
eqid |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 209 |
208
|
dvlog2lem |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 210 |
209
|
sseli |
⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 211 |
210
|
eldifad |
⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑥 ∈ ℂ ) |
| 212 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 213 |
212
|
logdmn0 |
⊢ ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝑥 ≠ 0 ) |
| 214 |
210 213
|
syl |
⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑥 ≠ 0 ) |
| 215 |
211 214
|
logcld |
⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 216 |
215
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 217 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 1 / 𝑥 ) ∈ V ) |
| 218 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
| 219 |
48 218 52
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → ( 1 − 𝑦 ) ∈ ℂ ) |
| 220 |
206
|
a1i |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → - 1 ∈ ℂ ) |
| 221 |
|
1cnd |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → 1 ∈ ℂ ) |
| 222 |
|
0cnd |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → 0 ∈ ℂ ) |
| 223 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 224 |
192 223
|
dvmptc |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 1 ) ) = ( 𝑦 ∈ ℂ ↦ 0 ) ) |
| 225 |
192
|
dvmptid |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ 1 ) ) |
| 226 |
192 221 222 224 218 221 225
|
dvmptsub |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 0 − 1 ) ) ) |
| 227 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
| 228 |
227
|
mpteq2i |
⊢ ( 𝑦 ∈ ℂ ↦ - 1 ) = ( 𝑦 ∈ ℂ ↦ ( 0 − 1 ) ) |
| 229 |
226 228
|
eqtr4di |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ - 1 ) ) |
| 230 |
50
|
a1i |
⊢ ( ⊤ → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) |
| 231 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 232 |
231
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 233 |
232
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 234 |
231
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 235 |
234
|
blopn |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 236 |
38 28 39 235
|
mp3an |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) |
| 237 |
236
|
a1i |
⊢ ( ⊤ → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 238 |
192 219 220 229 230 233 231 237
|
dvmptres |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - 1 ) ) |
| 239 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
| 240 |
|
f1of |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
| 241 |
239 240
|
ax-mp |
⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
| 242 |
212
|
logdmss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) |
| 243 |
209 242
|
sstri |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ { 0 } ) |
| 244 |
|
fssres |
⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ran log ∧ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ran log ) |
| 245 |
241 243 244
|
mp2an |
⊢ ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ran log |
| 246 |
245
|
a1i |
⊢ ( ⊤ → ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ran log ) |
| 247 |
246
|
feqmptd |
⊢ ( ⊤ → ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑥 ) ) ) |
| 248 |
|
fvres |
⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
| 249 |
248
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ 𝑥 ) ) |
| 250 |
247 249
|
eqtrdi |
⊢ ( ⊤ → ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ 𝑥 ) ) ) |
| 251 |
250
|
oveq2d |
⊢ ( ⊤ → ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) = ( ℂ D ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ 𝑥 ) ) ) ) |
| 252 |
208
|
dvlog2 |
⊢ ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑥 ) ) |
| 253 |
251 252
|
eqtr3di |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑥 ) ) ) |
| 254 |
|
fveq2 |
⊢ ( 𝑥 = ( 1 − 𝑦 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 1 − 𝑦 ) ) ) |
| 255 |
|
oveq2 |
⊢ ( 𝑥 = ( 1 − 𝑦 ) → ( 1 / 𝑥 ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 256 |
192 192 205 207 216 217 238 253 254 255
|
dvmptco |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) ) ) |
| 257 |
192 193 194 256
|
dvmptneg |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) ) ) |
| 258 |
53 74
|
reccld |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 / ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 259 |
|
mulcom |
⊢ ( ( ( 1 / ( 1 − 𝑦 ) ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = ( - 1 · ( 1 / ( 1 − 𝑦 ) ) ) ) |
| 260 |
258 206 259
|
sylancl |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = ( - 1 · ( 1 / ( 1 − 𝑦 ) ) ) ) |
| 261 |
258
|
mulm1d |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( - 1 · ( 1 / ( 1 − 𝑦 ) ) ) = - ( 1 / ( 1 − 𝑦 ) ) ) |
| 262 |
260 261
|
eqtrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = - ( 1 / ( 1 − 𝑦 ) ) ) |
| 263 |
262
|
negeqd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = - - ( 1 / ( 1 − 𝑦 ) ) ) |
| 264 |
258
|
negnegd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - - ( 1 / ( 1 − 𝑦 ) ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 265 |
263 264
|
eqtrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 266 |
265
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) |
| 267 |
257 266
|
eqtrdi |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) ) |
| 268 |
267
|
dmeqd |
⊢ ( ⊤ → dom ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = dom ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) ) |
| 269 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ( 1 / ( 1 − 𝑦 ) ) ∈ V → dom ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 270 |
|
ovexd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 / ( 1 − 𝑦 ) ) ∈ V ) |
| 271 |
269 270
|
mprg |
⊢ dom ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 272 |
268 271
|
eqtrdi |
⊢ ( ⊤ → dom ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 273 |
|
sumex |
⊢ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ∈ V |
| 274 |
273
|
a1i |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) → Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ∈ V ) |
| 275 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 276 |
275
|
cbvsumv |
⊢ Σ 𝑛 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) |
| 277 |
181 276
|
eqtrdi |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 278 |
277
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) = ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 279 |
|
eqid |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑧 ) + if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑧 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑧 ) + 1 ) ) ) / 2 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑧 ) + if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑧 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑧 ) + 1 ) ) ) / 2 ) ) |
| 280 |
97 278 105 119 183 184 279
|
pserdv2 |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 281 |
158
|
ssriv |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
| 282 |
281
|
a1i |
⊢ ( ⊤ → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 283 |
192 188 274 280 282 233 231 237
|
dvmptres |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 284 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 285 |
284
|
adantl |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 286 |
|
eqeq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 = 0 ↔ 𝑛 = 0 ) ) |
| 287 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 / 𝑚 ) = ( 1 / 𝑛 ) ) |
| 288 |
286 287
|
ifbieq2d |
⊢ ( 𝑚 = 𝑛 → if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 289 |
|
ovex |
⊢ ( 1 / 𝑛 ) ∈ V |
| 290 |
90 289
|
ifex |
⊢ if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ∈ V |
| 291 |
288 89 290
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 292 |
285 291
|
syl |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 293 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 294 |
293
|
adantl |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 295 |
294
|
neneqd |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 ) |
| 296 |
295
|
iffalsed |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) = ( 1 / 𝑛 ) ) |
| 297 |
292 296
|
eqtrd |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) = ( 1 / 𝑛 ) ) |
| 298 |
297
|
oveq2d |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) = ( 𝑛 · ( 1 / 𝑛 ) ) ) |
| 299 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 300 |
299
|
adantl |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 301 |
300 294
|
recidd |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · ( 1 / 𝑛 ) ) = 1 ) |
| 302 |
298 301
|
eqtrd |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) = 1 ) |
| 303 |
302
|
oveq1d |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = ( 1 · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
| 304 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 305 |
|
expcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( 𝑦 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 306 |
51 304 305
|
syl2an |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 307 |
306
|
mullidd |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 1 · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) |
| 308 |
303 307
|
eqtrd |
⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) |
| 309 |
308
|
sumeq2dv |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = Σ 𝑛 ∈ ℕ ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) |
| 310 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 311 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 312 |
311
|
fveq2i |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 313 |
310 312
|
eqtri |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 314 |
|
oveq1 |
⊢ ( 𝑛 = ( 1 + 𝑚 ) → ( 𝑛 − 1 ) = ( ( 1 + 𝑚 ) − 1 ) ) |
| 315 |
314
|
oveq2d |
⊢ ( 𝑛 = ( 1 + 𝑚 ) → ( 𝑦 ↑ ( 𝑛 − 1 ) ) = ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) |
| 316 |
|
1zzd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 1 ∈ ℤ ) |
| 317 |
|
0zd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 ∈ ℤ ) |
| 318 |
1 313 315 316 317 306
|
isumshft |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑛 ∈ ℕ ( 𝑦 ↑ ( 𝑛 − 1 ) ) = Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) |
| 319 |
|
pncan2 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 1 + 𝑚 ) − 1 ) = 𝑚 ) |
| 320 |
48 99 319
|
sylancr |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 1 + 𝑚 ) − 1 ) = 𝑚 ) |
| 321 |
320
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) = ( 𝑦 ↑ 𝑚 ) ) |
| 322 |
321
|
sumeq2i |
⊢ Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) = Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ 𝑚 ) |
| 323 |
318 322
|
eqtrdi |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑛 ∈ ℕ ( 𝑦 ↑ ( 𝑛 − 1 ) ) = Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ 𝑚 ) ) |
| 324 |
|
geoisum |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) < 1 ) → Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ 𝑚 ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 325 |
51 64 324
|
syl2anc |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ 𝑚 ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 326 |
309 323 325
|
3eqtrd |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 327 |
326
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) |
| 328 |
283 327
|
eqtrdi |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) ) |
| 329 |
267 328
|
eqtr4d |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) ) |
| 330 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 331 |
|
blcntr |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ+ ) → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 332 |
38 28 330 331
|
mp3an |
⊢ 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 333 |
332
|
a1i |
⊢ ( ⊤ → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 334 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 1 − 𝑦 ) = ( 1 − 0 ) ) |
| 335 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 336 |
334 335
|
eqtrdi |
⊢ ( 𝑦 = 0 → ( 1 − 𝑦 ) = 1 ) |
| 337 |
336
|
fveq2d |
⊢ ( 𝑦 = 0 → ( log ‘ ( 1 − 𝑦 ) ) = ( log ‘ 1 ) ) |
| 338 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 339 |
337 338
|
eqtrdi |
⊢ ( 𝑦 = 0 → ( log ‘ ( 1 − 𝑦 ) ) = 0 ) |
| 340 |
339
|
negeqd |
⊢ ( 𝑦 = 0 → - ( log ‘ ( 1 − 𝑦 ) ) = - 0 ) |
| 341 |
|
neg0 |
⊢ - 0 = 0 |
| 342 |
340 341
|
eqtrdi |
⊢ ( 𝑦 = 0 → - ( log ‘ ( 1 − 𝑦 ) ) = 0 ) |
| 343 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) |
| 344 |
342 343 90
|
fvmpt |
⊢ ( 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 0 ) = 0 ) |
| 345 |
332 344
|
mp1i |
⊢ ( ⊤ → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 0 ) = 0 ) |
| 346 |
|
oveq1 |
⊢ ( 0 = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) → ( 0 · ( 𝑦 ↑ 𝑛 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) |
| 347 |
346
|
eqeq1d |
⊢ ( 0 = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) → ( ( 0 · ( 𝑦 ↑ 𝑛 ) ) = 0 ↔ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) ) |
| 348 |
|
oveq1 |
⊢ ( ( 1 / 𝑛 ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) → ( ( 1 / 𝑛 ) · ( 𝑦 ↑ 𝑛 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) |
| 349 |
348
|
eqeq1d |
⊢ ( ( 1 / 𝑛 ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) → ( ( ( 1 / 𝑛 ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ↔ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) ) |
| 350 |
|
simpll |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → 𝑦 = 0 ) |
| 351 |
350 28
|
eqeltrdi |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → 𝑦 ∈ ℂ ) |
| 352 |
|
simplr |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → 𝑛 ∈ ℕ0 ) |
| 353 |
351 352
|
expcld |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → ( 𝑦 ↑ 𝑛 ) ∈ ℂ ) |
| 354 |
353
|
mul02d |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → ( 0 · ( 𝑦 ↑ 𝑛 ) ) = 0 ) |
| 355 |
|
simpll |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → 𝑦 = 0 ) |
| 356 |
355
|
oveq1d |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 𝑦 ↑ 𝑛 ) = ( 0 ↑ 𝑛 ) ) |
| 357 |
|
simpr |
⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 358 |
357 14
|
sylib |
⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ) |
| 359 |
358
|
ord |
⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → ( ¬ 𝑛 ∈ ℕ → 𝑛 = 0 ) ) |
| 360 |
359
|
con1d |
⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → ( ¬ 𝑛 = 0 → 𝑛 ∈ ℕ ) ) |
| 361 |
360
|
imp |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → 𝑛 ∈ ℕ ) |
| 362 |
361
|
0expd |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 0 ↑ 𝑛 ) = 0 ) |
| 363 |
356 362
|
eqtrd |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 𝑦 ↑ 𝑛 ) = 0 ) |
| 364 |
363
|
oveq2d |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( ( 1 / 𝑛 ) · ( 𝑦 ↑ 𝑛 ) ) = ( ( 1 / 𝑛 ) · 0 ) ) |
| 365 |
361
|
nnrecred |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 366 |
365
|
recnd |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 367 |
366
|
mul01d |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( ( 1 / 𝑛 ) · 0 ) = 0 ) |
| 368 |
364 367
|
eqtrd |
⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( ( 1 / 𝑛 ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) |
| 369 |
347 349 354 368
|
ifbothda |
⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) |
| 370 |
369
|
sumeq2dv |
⊢ ( 𝑦 = 0 → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 0 ) |
| 371 |
1
|
eqimssi |
⊢ ℕ0 ⊆ ( ℤ≥ ‘ 0 ) |
| 372 |
371
|
orci |
⊢ ( ℕ0 ⊆ ( ℤ≥ ‘ 0 ) ∨ ℕ0 ∈ Fin ) |
| 373 |
|
sumz |
⊢ ( ( ℕ0 ⊆ ( ℤ≥ ‘ 0 ) ∨ ℕ0 ∈ Fin ) → Σ 𝑛 ∈ ℕ0 0 = 0 ) |
| 374 |
372 373
|
ax-mp |
⊢ Σ 𝑛 ∈ ℕ0 0 = 0 |
| 375 |
370 374
|
eqtrdi |
⊢ ( 𝑦 = 0 → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) |
| 376 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) |
| 377 |
375 376 90
|
fvmpt |
⊢ ( 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 0 ) = 0 ) |
| 378 |
332 377
|
mp1i |
⊢ ( ⊤ → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 0 ) = 0 ) |
| 379 |
345 378
|
eqtr4d |
⊢ ( ⊤ → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 0 ) = ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 0 ) ) |
| 380 |
45 46 47 78 190 272 329 333 379
|
dv11cn |
⊢ ( ⊤ → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) |
| 381 |
380
|
fveq1d |
⊢ ( ⊤ → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 𝐴 ) = ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 𝐴 ) ) |
| 382 |
44 381
|
mp1i |
⊢ ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 𝐴 ) = ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 𝐴 ) ) |
| 383 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( 1 − 𝑦 ) = ( 1 − 𝐴 ) ) |
| 384 |
383
|
fveq2d |
⊢ ( 𝑦 = 𝐴 → ( log ‘ ( 1 − 𝑦 ) ) = ( log ‘ ( 1 − 𝐴 ) ) ) |
| 385 |
384
|
negeqd |
⊢ ( 𝑦 = 𝐴 → - ( log ‘ ( 1 − 𝑦 ) ) = - ( log ‘ ( 1 − 𝐴 ) ) ) |
| 386 |
|
negex |
⊢ - ( log ‘ ( 1 − 𝐴 ) ) ∈ V |
| 387 |
385 343 386
|
fvmpt |
⊢ ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 𝐴 ) = - ( log ‘ ( 1 − 𝐴 ) ) ) |
| 388 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑛 ) ) |
| 389 |
388
|
oveq2d |
⊢ ( 𝑦 = 𝐴 → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 390 |
389
|
sumeq2sdv |
⊢ ( 𝑦 = 𝐴 → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 391 |
|
sumex |
⊢ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ∈ V |
| 392 |
390 376 391
|
fvmpt |
⊢ ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 𝐴 ) = Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 393 |
382 387 392
|
3eqtr3d |
⊢ ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - ( log ‘ ( 1 − 𝐴 ) ) = Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 394 |
43 393
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → - ( log ‘ ( 1 − 𝐴 ) ) = Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 395 |
26 394
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ) |
| 396 |
|
seqex |
⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ∈ V |
| 397 |
396
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ∈ V ) |
| 398 |
|
seqex |
⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ∈ V |
| 399 |
398
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ∈ V ) |
| 400 |
|
1zzd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℤ ) |
| 401 |
|
elnnuz |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 402 |
|
fvres |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) ‘ 𝑛 ) = ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) ) |
| 403 |
401 402
|
sylbi |
⊢ ( 𝑛 ∈ ℕ → ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) ‘ 𝑛 ) = ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) ) |
| 404 |
403
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) ‘ 𝑛 ) ) |
| 405 |
|
addlid |
⊢ ( 𝑛 ∈ ℂ → ( 0 + 𝑛 ) = 𝑛 ) |
| 406 |
405
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℂ ) → ( 0 + 𝑛 ) = 𝑛 ) |
| 407 |
|
0cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ∈ ℂ ) |
| 408 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
| 409 |
408
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
| 410 |
|
0cnd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → 0 ∈ ℂ ) |
| 411 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 412 |
411
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 413 |
|
neqne |
⊢ ( ¬ 𝑘 = 0 → 𝑘 ≠ 0 ) |
| 414 |
|
reccl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 415 |
412 413 414
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 = 0 ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 416 |
410 415
|
ifclda |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) ∈ ℂ ) |
| 417 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 418 |
417
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 419 |
416 418
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 420 |
419
|
fmpttd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
| 421 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 422 |
|
ffvelcdm |
⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ∧ 1 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 1 ) ∈ ℂ ) |
| 423 |
420 421 422
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 1 ) ∈ ℂ ) |
| 424 |
|
elfz1eq |
⊢ ( 𝑛 ∈ ( 0 ... 0 ) → 𝑛 = 0 ) |
| 425 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 426 |
425
|
oveq2i |
⊢ ( 0 ... ( 1 − 1 ) ) = ( 0 ... 0 ) |
| 427 |
424 426
|
eleq2s |
⊢ ( 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) → 𝑛 = 0 ) |
| 428 |
427
|
fveq2d |
⊢ ( 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 0 ) ) |
| 429 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 430 |
|
iftrue |
⊢ ( 𝑘 = 0 → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) = 0 ) |
| 431 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ 0 ) ) |
| 432 |
430 431
|
oveq12d |
⊢ ( 𝑘 = 0 → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( 0 · ( 𝐴 ↑ 0 ) ) ) |
| 433 |
|
ovex |
⊢ ( 0 · ( 𝐴 ↑ 0 ) ) ∈ V |
| 434 |
432 8 433
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝐴 ↑ 0 ) ) ) |
| 435 |
429 434
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝐴 ↑ 0 ) ) |
| 436 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐴 ↑ 0 ) ∈ ℂ ) |
| 437 |
27 429 436
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ↑ 0 ) ∈ ℂ ) |
| 438 |
437
|
mul02d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 0 · ( 𝐴 ↑ 0 ) ) = 0 ) |
| 439 |
435 438
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 0 ) = 0 ) |
| 440 |
428 439
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = 0 ) |
| 441 |
406 407 409 423 440
|
seqid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ) |
| 442 |
293
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 443 |
442
|
neneqd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 ) |
| 444 |
443
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) = ( 1 / 𝑛 ) ) |
| 445 |
444
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) = ( ( 1 / 𝑛 ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 446 |
284 23
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ↑ 𝑛 ) ∈ ℂ ) |
| 447 |
299
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 448 |
446 447 442
|
divrec2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) = ( ( 1 / 𝑛 ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 449 |
445 448
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) = ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) |
| 450 |
284 11
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 451 |
|
id |
⊢ ( 𝑘 = 𝑛 → 𝑘 = 𝑛 ) |
| 452 |
6 451
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) = ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) |
| 453 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) |
| 454 |
|
ovex |
⊢ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ∈ V |
| 455 |
452 453 454
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) = ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) |
| 456 |
455
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) = ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) |
| 457 |
449 450 456
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ) |
| 458 |
401 457
|
sylan2br |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ) |
| 459 |
400 458
|
seqfeq |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 460 |
441 459
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 461 |
460
|
fveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ‘ 𝑛 ) ) |
| 462 |
404 461
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ‘ 𝑛 ) ) |
| 463 |
310 397 399 400 462
|
climeq |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ) ) |
| 464 |
395 463
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ) |