Metamath Proof Explorer


Theorem geoisum

Description: The infinite sum of 1 + A ^ 1 + A ^ 2 ... is ( 1 / ( 1 - A ) ) . (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion geoisum ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ0 ( 𝐴𝑘 ) = ( 1 / ( 1 − 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 nn0uz 0 = ( ℤ ‘ 0 )
2 0zd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ∈ ℤ )
3 oveq2 ( 𝑛 = 𝑘 → ( 𝐴𝑛 ) = ( 𝐴𝑘 ) )
4 eqid ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) )
5 ovex ( 𝐴𝑘 ) ∈ V
6 3 4 5 fvmpt ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) = ( 𝐴𝑘 ) )
7 6 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) = ( 𝐴𝑘 ) )
8 expcl ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℂ )
9 8 adantlr ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℂ )
10 simpl ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ )
11 simpr ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 )
12 10 11 7 geolim ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ) ⇝ ( 1 / ( 1 − 𝐴 ) ) )
13 1 2 7 9 12 isumclim ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ0 ( 𝐴𝑘 ) = ( 1 / ( 1 − 𝐴 ) ) )