| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 2 |
|
0zd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. ZZ ) |
| 3 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
| 4 |
|
eqid |
|- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
| 5 |
|
ovex |
|- ( A ^ k ) e. _V |
| 6 |
3 4 5
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 7 |
6
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 8 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 9 |
8
|
adantlr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 10 |
|
simpl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
| 11 |
|
simpr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
| 12 |
10 11 7
|
geolim |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) ) |
| 13 |
1 2 7 9 12
|
isumclim |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |