Step |
Hyp |
Ref |
Expression |
1 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
2 |
|
0zd |
|- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> 0 e. ZZ ) |
3 |
|
oveq2 |
|- ( n = k -> ( ( 1 / A ) ^ n ) = ( ( 1 / A ) ^ k ) ) |
4 |
|
eqid |
|- ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) |
5 |
|
ovex |
|- ( ( 1 / A ) ^ k ) e. _V |
6 |
3 4 5
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) ` k ) = ( ( 1 / A ) ^ k ) ) |
7 |
6
|
adantl |
|- ( ( ( A e. CC /\ 1 < ( abs ` A ) ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) ` k ) = ( ( 1 / A ) ^ k ) ) |
8 |
|
0le1 |
|- 0 <_ 1 |
9 |
|
0re |
|- 0 e. RR |
10 |
|
1re |
|- 1 e. RR |
11 |
9 10
|
lenlti |
|- ( 0 <_ 1 <-> -. 1 < 0 ) |
12 |
8 11
|
mpbi |
|- -. 1 < 0 |
13 |
|
fveq2 |
|- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
14 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
15 |
13 14
|
eqtrdi |
|- ( A = 0 -> ( abs ` A ) = 0 ) |
16 |
15
|
breq2d |
|- ( A = 0 -> ( 1 < ( abs ` A ) <-> 1 < 0 ) ) |
17 |
12 16
|
mtbiri |
|- ( A = 0 -> -. 1 < ( abs ` A ) ) |
18 |
17
|
necon2ai |
|- ( 1 < ( abs ` A ) -> A =/= 0 ) |
19 |
|
reccl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
20 |
18 19
|
sylan2 |
|- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> ( 1 / A ) e. CC ) |
21 |
|
expcl |
|- ( ( ( 1 / A ) e. CC /\ k e. NN0 ) -> ( ( 1 / A ) ^ k ) e. CC ) |
22 |
20 21
|
sylan |
|- ( ( ( A e. CC /\ 1 < ( abs ` A ) ) /\ k e. NN0 ) -> ( ( 1 / A ) ^ k ) e. CC ) |
23 |
|
simpl |
|- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> A e. CC ) |
24 |
|
simpr |
|- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> 1 < ( abs ` A ) ) |
25 |
23 24 7
|
georeclim |
|- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) ) ~~> ( A / ( A - 1 ) ) ) |
26 |
1 2 7 22 25
|
isumclim |
|- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> sum_ k e. NN0 ( ( 1 / A ) ^ k ) = ( A / ( A - 1 ) ) ) |