| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℕ0 ) |
| 4 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 5 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) |
| 6 |
|
ovex |
⊢ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ V |
| 7 |
4 5 6
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 9 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 11 |
|
reexpcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 12 |
10 11
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 13 |
8 12
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 14 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 = 0 ↔ 𝑘 = 0 ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) |
| 16 |
14 15
|
ifbieq2d |
⊢ ( 𝑛 = 𝑘 → if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) = if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 18 |
16 17
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 19 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 20 |
|
ovex |
⊢ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ V |
| 21 |
18 19 20
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 23 |
|
0cnd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → 0 ∈ ℂ ) |
| 24 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 26 |
|
neqne |
⊢ ( ¬ 𝑘 = 0 → 𝑘 ≠ 0 ) |
| 27 |
|
reccl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 28 |
25 26 27
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 = 0 ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 29 |
23 28
|
ifclda |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) ∈ ℂ ) |
| 30 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 31 |
30
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 32 |
29 31
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 33 |
22 32
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 34 |
10
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 35 |
|
absidm |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 37 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) |
| 38 |
36 37
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( abs ‘ 𝐴 ) ) < 1 ) |
| 39 |
34 38 8
|
geolim |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝐴 ) ) ) ) |
| 40 |
|
seqex |
⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ∈ V |
| 41 |
|
ovex |
⊢ ( 1 / ( 1 − ( abs ‘ 𝐴 ) ) ) ∈ V |
| 42 |
40 41
|
breldm |
⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝐴 ) ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 43 |
39 42
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 44 |
|
1red |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℝ ) |
| 45 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 46 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
| 47 |
46
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 48 |
47
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 49 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 50 |
49 31
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 51 |
48 50
|
absmuld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 1 / 𝑘 ) ) · ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 52 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ ) |
| 54 |
53
|
rpreccld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 55 |
54
|
rpge0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / 𝑘 ) ) |
| 56 |
47 55
|
absidd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) ) |
| 57 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) |
| 58 |
|
absexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 59 |
57 49 58
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 60 |
56 59
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ ( 1 / 𝑘 ) ) · ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) = ( ( 1 / 𝑘 ) · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 61 |
51 60
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( 1 / 𝑘 ) · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 62 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ ) |
| 63 |
49 12
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 64 |
50
|
absge0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) |
| 65 |
64 59
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 66 |
|
nnge1 |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) |
| 67 |
66
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑘 ) |
| 68 |
|
0lt1 |
⊢ 0 < 1 |
| 69 |
68
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 < 1 ) |
| 70 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 71 |
70
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 72 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 < 𝑘 ) |
| 74 |
|
lerec |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( 1 ≤ 𝑘 ↔ ( 1 / 𝑘 ) ≤ ( 1 / 1 ) ) ) |
| 75 |
62 69 71 73 74
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 ≤ 𝑘 ↔ ( 1 / 𝑘 ) ≤ ( 1 / 1 ) ) ) |
| 76 |
67 75
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ≤ ( 1 / 1 ) ) |
| 77 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 78 |
76 77
|
breqtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ≤ 1 ) |
| 79 |
47 62 63 65 78
|
lemul1ad |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ≤ ( 1 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 80 |
61 79
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ≤ ( 1 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 81 |
49 22
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 82 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
| 83 |
82
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
| 84 |
83
|
neneqd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ¬ 𝑘 = 0 ) |
| 85 |
84
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) ) |
| 86 |
85
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 87 |
81 86
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 88 |
87
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 89 |
49 8
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 90 |
89
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) = ( 1 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 91 |
80 88 90
|
3brtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) ) ≤ ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 92 |
45 91
|
sylan2br |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) ) ≤ ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 93 |
1 3 13 33 43 44 92
|
cvgcmpce |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |