Metamath Proof Explorer


Theorem logtayllem

Description: Lemma for logtayl . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion logtayllem ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ) ∈ dom ⇝ )

Proof

Step Hyp Ref Expression
1 nn0uz 0 = ( ℤ ‘ 0 )
2 1nn0 1 ∈ ℕ0
3 2 a1i ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℕ0 )
4 oveq2 ( 𝑛 = 𝑘 → ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
5 eqid ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) )
6 ovex ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ V
7 4 5 6 fvmpt ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
8 7 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
9 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
10 9 adantr ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℝ )
11 reexpcl ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ )
12 10 11 sylan ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ )
13 8 12 eqeltrd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ )
14 eqeq1 ( 𝑛 = 𝑘 → ( 𝑛 = 0 ↔ 𝑘 = 0 ) )
15 oveq2 ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) )
16 14 15 ifbieq2d ( 𝑛 = 𝑘 → if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) = if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) )
17 oveq2 ( 𝑛 = 𝑘 → ( 𝐴𝑛 ) = ( 𝐴𝑘 ) )
18 16 17 oveq12d ( 𝑛 = 𝑘 → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴𝑘 ) ) )
19 eqid ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) )
20 ovex ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴𝑘 ) ) ∈ V
21 18 19 20 fvmpt ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ‘ 𝑘 ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴𝑘 ) ) )
22 21 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ‘ 𝑘 ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴𝑘 ) ) )
23 0cnd ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → 0 ∈ ℂ )
24 nn0cn ( 𝑘 ∈ ℕ0𝑘 ∈ ℂ )
25 24 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ )
26 neqne ( ¬ 𝑘 = 0 → 𝑘 ≠ 0 )
27 reccl ( ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) → ( 1 / 𝑘 ) ∈ ℂ )
28 25 26 27 syl2an ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 = 0 ) → ( 1 / 𝑘 ) ∈ ℂ )
29 23 28 ifclda ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) ∈ ℂ )
30 expcl ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℂ )
31 30 adantlr ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℂ )
32 29 31 mulcld ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴𝑘 ) ) ∈ ℂ )
33 22 32 eqeltrd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ )
34 10 recnd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℂ )
35 absidm ( 𝐴 ∈ ℂ → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) )
36 35 adantr ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) )
37 simpr ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 )
38 36 37 eqbrtrd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( abs ‘ 𝐴 ) ) < 1 )
39 34 38 8 geolim ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝐴 ) ) ) )
40 seqex seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ∈ V
41 ovex ( 1 / ( 1 − ( abs ‘ 𝐴 ) ) ) ∈ V
42 40 41 breldm ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝐴 ) ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ )
43 39 42 syl ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ )
44 1red ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℝ )
45 elnnuz ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ ‘ 1 ) )
46 nnrecre ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ )
47 46 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ )
48 47 recnd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℂ )
49 nnnn0 ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 )
50 49 31 sylan2 ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴𝑘 ) ∈ ℂ )
51 48 50 absmuld ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴𝑘 ) ) ) = ( ( abs ‘ ( 1 / 𝑘 ) ) · ( abs ‘ ( 𝐴𝑘 ) ) ) )
52 nnrp ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ )
53 52 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ )
54 53 rpreccld ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ+ )
55 54 rpge0d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / 𝑘 ) )
56 47 55 absidd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) )
57 simpl ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ )
58 absexp ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐴𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
59 57 49 58 syl2an ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 𝐴𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
60 56 59 oveq12d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ ( 1 / 𝑘 ) ) · ( abs ‘ ( 𝐴𝑘 ) ) ) = ( ( 1 / 𝑘 ) · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )
61 51 60 eqtrd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴𝑘 ) ) ) = ( ( 1 / 𝑘 ) · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )
62 1red ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ )
63 49 12 sylan2 ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ )
64 50 absge0d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( abs ‘ ( 𝐴𝑘 ) ) )
65 64 59 breqtrd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
66 nnge1 ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 )
67 66 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑘 )
68 0lt1 0 < 1
69 68 a1i ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 < 1 )
70 nnre ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ )
71 70 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ )
72 nngt0 ( 𝑘 ∈ ℕ → 0 < 𝑘 )
73 72 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 < 𝑘 )
74 lerec ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( 1 ≤ 𝑘 ↔ ( 1 / 𝑘 ) ≤ ( 1 / 1 ) ) )
75 62 69 71 73 74 syl22anc ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 ≤ 𝑘 ↔ ( 1 / 𝑘 ) ≤ ( 1 / 1 ) ) )
76 67 75 mpbid ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ≤ ( 1 / 1 ) )
77 1div1e1 ( 1 / 1 ) = 1
78 76 77 breqtrdi ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ≤ 1 )
79 47 62 63 65 78 lemul1ad ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ≤ ( 1 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )
80 61 79 eqbrtrd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴𝑘 ) ) ) ≤ ( 1 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )
81 49 22 sylan2 ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ‘ 𝑘 ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴𝑘 ) ) )
82 nnne0 ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 )
83 82 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 )
84 83 neneqd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ¬ 𝑘 = 0 )
85 84 iffalsed ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) )
86 85 oveq1d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴𝑘 ) ) = ( ( 1 / 𝑘 ) · ( 𝐴𝑘 ) ) )
87 81 86 eqtrd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ‘ 𝑘 ) = ( ( 1 / 𝑘 ) · ( 𝐴𝑘 ) ) )
88 87 fveq2d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ‘ 𝑘 ) ) = ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴𝑘 ) ) ) )
89 49 8 sylan2 ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
90 89 oveq2d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) = ( 1 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )
91 80 88 90 3brtr4d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ‘ 𝑘 ) ) ≤ ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) )
92 45 91 sylan2br ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ( ℤ ‘ 1 ) ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ‘ 𝑘 ) ) ≤ ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) )
93 1 3 13 33 43 44 92 cvgcmpce ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴𝑛 ) ) ) ) ∈ dom ⇝ )