| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 2 |
|
1nn0 |
|- 1 e. NN0 |
| 3 |
2
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. NN0 ) |
| 4 |
|
oveq2 |
|- ( n = k -> ( ( abs ` A ) ^ n ) = ( ( abs ` A ) ^ k ) ) |
| 5 |
|
eqid |
|- ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) = ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) |
| 6 |
|
ovex |
|- ( ( abs ` A ) ^ k ) e. _V |
| 7 |
4 5 6
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 8 |
7
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 9 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 10 |
9
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) |
| 11 |
|
reexpcl |
|- ( ( ( abs ` A ) e. RR /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 12 |
10 11
|
sylan |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 13 |
8 12
|
eqeltrd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) e. RR ) |
| 14 |
|
eqeq1 |
|- ( n = k -> ( n = 0 <-> k = 0 ) ) |
| 15 |
|
oveq2 |
|- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
| 16 |
14 15
|
ifbieq2d |
|- ( n = k -> if ( n = 0 , 0 , ( 1 / n ) ) = if ( k = 0 , 0 , ( 1 / k ) ) ) |
| 17 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
| 18 |
16 17
|
oveq12d |
|- ( n = k -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) = ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
| 19 |
|
eqid |
|- ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) = ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 20 |
|
ovex |
|- ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) e. _V |
| 21 |
18 19 20
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) = ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
| 22 |
21
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) = ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
| 23 |
|
0cnd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) /\ k = 0 ) -> 0 e. CC ) |
| 24 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 25 |
24
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> k e. CC ) |
| 26 |
|
neqne |
|- ( -. k = 0 -> k =/= 0 ) |
| 27 |
|
reccl |
|- ( ( k e. CC /\ k =/= 0 ) -> ( 1 / k ) e. CC ) |
| 28 |
25 26 27
|
syl2an |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) /\ -. k = 0 ) -> ( 1 / k ) e. CC ) |
| 29 |
23 28
|
ifclda |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> if ( k = 0 , 0 , ( 1 / k ) ) e. CC ) |
| 30 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 31 |
30
|
adantlr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 32 |
29 31
|
mulcld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) e. CC ) |
| 33 |
22 32
|
eqeltrd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) e. CC ) |
| 34 |
10
|
recnd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. CC ) |
| 35 |
|
absidm |
|- ( A e. CC -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
| 36 |
35
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
| 37 |
|
simpr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
| 38 |
36 37
|
eqbrtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( abs ` A ) ) < 1 ) |
| 39 |
34 38 8
|
geolim |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( abs ` A ) ) ) ) |
| 40 |
|
seqex |
|- seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) e. _V |
| 41 |
|
ovex |
|- ( 1 / ( 1 - ( abs ` A ) ) ) e. _V |
| 42 |
40 41
|
breldm |
|- ( seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( abs ` A ) ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) e. dom ~~> ) |
| 43 |
39 42
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) e. dom ~~> ) |
| 44 |
|
1red |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. RR ) |
| 45 |
|
elnnuz |
|- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
| 46 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
| 47 |
46
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 48 |
47
|
recnd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) e. CC ) |
| 49 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 50 |
49 31
|
sylan2 |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( A ^ k ) e. CC ) |
| 51 |
48 50
|
absmuld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( 1 / k ) x. ( A ^ k ) ) ) = ( ( abs ` ( 1 / k ) ) x. ( abs ` ( A ^ k ) ) ) ) |
| 52 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 53 |
52
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k e. RR+ ) |
| 54 |
53
|
rpreccld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) e. RR+ ) |
| 55 |
54
|
rpge0d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 <_ ( 1 / k ) ) |
| 56 |
47 55
|
absidd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( 1 / k ) ) = ( 1 / k ) ) |
| 57 |
|
simpl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
| 58 |
|
absexp |
|- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
| 59 |
57 49 58
|
syl2an |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
| 60 |
56 59
|
oveq12d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( abs ` ( 1 / k ) ) x. ( abs ` ( A ^ k ) ) ) = ( ( 1 / k ) x. ( ( abs ` A ) ^ k ) ) ) |
| 61 |
51 60
|
eqtrd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( 1 / k ) x. ( A ^ k ) ) ) = ( ( 1 / k ) x. ( ( abs ` A ) ^ k ) ) ) |
| 62 |
|
1red |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 1 e. RR ) |
| 63 |
49 12
|
sylan2 |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 64 |
50
|
absge0d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 <_ ( abs ` ( A ^ k ) ) ) |
| 65 |
64 59
|
breqtrd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 <_ ( ( abs ` A ) ^ k ) ) |
| 66 |
|
nnge1 |
|- ( k e. NN -> 1 <_ k ) |
| 67 |
66
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 1 <_ k ) |
| 68 |
|
0lt1 |
|- 0 < 1 |
| 69 |
68
|
a1i |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 < 1 ) |
| 70 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 71 |
70
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k e. RR ) |
| 72 |
|
nngt0 |
|- ( k e. NN -> 0 < k ) |
| 73 |
72
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 < k ) |
| 74 |
|
lerec |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( k e. RR /\ 0 < k ) ) -> ( 1 <_ k <-> ( 1 / k ) <_ ( 1 / 1 ) ) ) |
| 75 |
62 69 71 73 74
|
syl22anc |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 <_ k <-> ( 1 / k ) <_ ( 1 / 1 ) ) ) |
| 76 |
67 75
|
mpbid |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) <_ ( 1 / 1 ) ) |
| 77 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 78 |
76 77
|
breqtrdi |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) <_ 1 ) |
| 79 |
47 62 63 65 78
|
lemul1ad |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( 1 / k ) x. ( ( abs ` A ) ^ k ) ) <_ ( 1 x. ( ( abs ` A ) ^ k ) ) ) |
| 80 |
61 79
|
eqbrtrd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( 1 / k ) x. ( A ^ k ) ) ) <_ ( 1 x. ( ( abs ` A ) ^ k ) ) ) |
| 81 |
49 22
|
sylan2 |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) = ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
| 82 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
| 83 |
82
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k =/= 0 ) |
| 84 |
83
|
neneqd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> -. k = 0 ) |
| 85 |
84
|
iffalsed |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> if ( k = 0 , 0 , ( 1 / k ) ) = ( 1 / k ) ) |
| 86 |
85
|
oveq1d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) = ( ( 1 / k ) x. ( A ^ k ) ) ) |
| 87 |
81 86
|
eqtrd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) = ( ( 1 / k ) x. ( A ^ k ) ) ) |
| 88 |
87
|
fveq2d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) ) = ( abs ` ( ( 1 / k ) x. ( A ^ k ) ) ) ) |
| 89 |
49 8
|
sylan2 |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 90 |
89
|
oveq2d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 x. ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) ) = ( 1 x. ( ( abs ` A ) ^ k ) ) ) |
| 91 |
80 88 90
|
3brtr4d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) ) <_ ( 1 x. ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) ) ) |
| 92 |
45 91
|
sylan2br |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) ) <_ ( 1 x. ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) ) ) |
| 93 |
1 3 13 33 43 44 92
|
cvgcmpce |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ) e. dom ~~> ) |