| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 2 |
|
0zd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. ZZ ) |
| 3 |
|
eqeq1 |
|- ( k = n -> ( k = 0 <-> n = 0 ) ) |
| 4 |
|
oveq2 |
|- ( k = n -> ( 1 / k ) = ( 1 / n ) ) |
| 5 |
3 4
|
ifbieq2d |
|- ( k = n -> if ( k = 0 , 0 , ( 1 / k ) ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 6 |
|
oveq2 |
|- ( k = n -> ( A ^ k ) = ( A ^ n ) ) |
| 7 |
5 6
|
oveq12d |
|- ( k = n -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 8 |
|
eqid |
|- ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) = ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
| 9 |
|
ovex |
|- ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) e. _V |
| 10 |
7 8 9
|
fvmpt |
|- ( n e. NN0 -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 11 |
10
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 12 |
|
0cnd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) /\ n = 0 ) -> 0 e. CC ) |
| 13 |
|
simpr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> n e. NN0 ) |
| 14 |
|
elnn0 |
|- ( n e. NN0 <-> ( n e. NN \/ n = 0 ) ) |
| 15 |
13 14
|
sylib |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( n e. NN \/ n = 0 ) ) |
| 16 |
15
|
ord |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( -. n e. NN -> n = 0 ) ) |
| 17 |
16
|
con1d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( -. n = 0 -> n e. NN ) ) |
| 18 |
17
|
imp |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) /\ -. n = 0 ) -> n e. NN ) |
| 19 |
18
|
nnrecred |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) /\ -. n = 0 ) -> ( 1 / n ) e. RR ) |
| 20 |
19
|
recnd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) /\ -. n = 0 ) -> ( 1 / n ) e. CC ) |
| 21 |
12 20
|
ifclda |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> if ( n = 0 , 0 , ( 1 / n ) ) e. CC ) |
| 22 |
|
expcl |
|- ( ( A e. CC /\ n e. NN0 ) -> ( A ^ n ) e. CC ) |
| 23 |
22
|
adantlr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( A ^ n ) e. CC ) |
| 24 |
21 23
|
mulcld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) e. CC ) |
| 25 |
|
logtayllem |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) e. dom ~~> ) |
| 26 |
1 2 11 24 25
|
isumclim2 |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ~~> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 27 |
|
simpl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
| 28 |
|
0cn |
|- 0 e. CC |
| 29 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 30 |
29
|
cnmetdval |
|- ( ( A e. CC /\ 0 e. CC ) -> ( A ( abs o. - ) 0 ) = ( abs ` ( A - 0 ) ) ) |
| 31 |
27 28 30
|
sylancl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ( abs o. - ) 0 ) = ( abs ` ( A - 0 ) ) ) |
| 32 |
|
subid1 |
|- ( A e. CC -> ( A - 0 ) = A ) |
| 33 |
32
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A - 0 ) = A ) |
| 34 |
33
|
fveq2d |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A - 0 ) ) = ( abs ` A ) ) |
| 35 |
31 34
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ( abs o. - ) 0 ) = ( abs ` A ) ) |
| 36 |
|
simpr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
| 37 |
35 36
|
eqbrtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ( abs o. - ) 0 ) < 1 ) |
| 38 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 39 |
|
1xr |
|- 1 e. RR* |
| 40 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ A e. CC ) ) -> ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( A ( abs o. - ) 0 ) < 1 ) ) |
| 41 |
38 39 40
|
mpanl12 |
|- ( ( 0 e. CC /\ A e. CC ) -> ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( A ( abs o. - ) 0 ) < 1 ) ) |
| 42 |
28 27 41
|
sylancr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( A ( abs o. - ) 0 ) < 1 ) ) |
| 43 |
37 42
|
mpbird |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 44 |
|
tru |
|- T. |
| 45 |
|
eqid |
|- ( 0 ( ball ` ( abs o. - ) ) 1 ) = ( 0 ( ball ` ( abs o. - ) ) 1 ) |
| 46 |
|
0cnd |
|- ( T. -> 0 e. CC ) |
| 47 |
39
|
a1i |
|- ( T. -> 1 e. RR* ) |
| 48 |
|
ax-1cn |
|- 1 e. CC |
| 49 |
|
blssm |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
| 50 |
38 28 39 49
|
mp3an |
|- ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
| 51 |
50
|
sseli |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> y e. CC ) |
| 52 |
|
subcl |
|- ( ( 1 e. CC /\ y e. CC ) -> ( 1 - y ) e. CC ) |
| 53 |
48 51 52
|
sylancr |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 - y ) e. CC ) |
| 54 |
51
|
abscld |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) e. RR ) |
| 55 |
29
|
cnmetdval |
|- ( ( y e. CC /\ 0 e. CC ) -> ( y ( abs o. - ) 0 ) = ( abs ` ( y - 0 ) ) ) |
| 56 |
51 28 55
|
sylancl |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y ( abs o. - ) 0 ) = ( abs ` ( y - 0 ) ) ) |
| 57 |
51
|
subid1d |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y - 0 ) = y ) |
| 58 |
57
|
fveq2d |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( y - 0 ) ) = ( abs ` y ) ) |
| 59 |
56 58
|
eqtrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y ( abs o. - ) 0 ) = ( abs ` y ) ) |
| 60 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ y e. CC ) ) -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( y ( abs o. - ) 0 ) < 1 ) ) |
| 61 |
38 39 60
|
mpanl12 |
|- ( ( 0 e. CC /\ y e. CC ) -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( y ( abs o. - ) 0 ) < 1 ) ) |
| 62 |
28 51 61
|
sylancr |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( y ( abs o. - ) 0 ) < 1 ) ) |
| 63 |
62
|
ibi |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y ( abs o. - ) 0 ) < 1 ) |
| 64 |
59 63
|
eqbrtrrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) < 1 ) |
| 65 |
54 64
|
gtned |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 1 =/= ( abs ` y ) ) |
| 66 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 67 |
|
fveq2 |
|- ( 1 = y -> ( abs ` 1 ) = ( abs ` y ) ) |
| 68 |
66 67
|
eqtr3id |
|- ( 1 = y -> 1 = ( abs ` y ) ) |
| 69 |
68
|
necon3i |
|- ( 1 =/= ( abs ` y ) -> 1 =/= y ) |
| 70 |
65 69
|
syl |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 1 =/= y ) |
| 71 |
|
subeq0 |
|- ( ( 1 e. CC /\ y e. CC ) -> ( ( 1 - y ) = 0 <-> 1 = y ) ) |
| 72 |
71
|
necon3bid |
|- ( ( 1 e. CC /\ y e. CC ) -> ( ( 1 - y ) =/= 0 <-> 1 =/= y ) ) |
| 73 |
48 51 72
|
sylancr |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( 1 - y ) =/= 0 <-> 1 =/= y ) ) |
| 74 |
70 73
|
mpbird |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 - y ) =/= 0 ) |
| 75 |
53 74
|
logcld |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` ( 1 - y ) ) e. CC ) |
| 76 |
75
|
negcld |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u ( log ` ( 1 - y ) ) e. CC ) |
| 77 |
76
|
adantl |
|- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> -u ( log ` ( 1 - y ) ) e. CC ) |
| 78 |
77
|
fmpttd |
|- ( T. -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) : ( 0 ( ball ` ( abs o. - ) ) 1 ) --> CC ) |
| 79 |
51
|
absge0d |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 <_ ( abs ` y ) ) |
| 80 |
54
|
rexrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) e. RR* ) |
| 81 |
|
peano2re |
|- ( ( abs ` y ) e. RR -> ( ( abs ` y ) + 1 ) e. RR ) |
| 82 |
54 81
|
syl |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( abs ` y ) + 1 ) e. RR ) |
| 83 |
82
|
rehalfcld |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) e. RR ) |
| 84 |
83
|
rexrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) e. RR* ) |
| 85 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 86 |
|
eqeq1 |
|- ( m = j -> ( m = 0 <-> j = 0 ) ) |
| 87 |
|
oveq2 |
|- ( m = j -> ( 1 / m ) = ( 1 / j ) ) |
| 88 |
86 87
|
ifbieq2d |
|- ( m = j -> if ( m = 0 , 0 , ( 1 / m ) ) = if ( j = 0 , 0 , ( 1 / j ) ) ) |
| 89 |
|
eqid |
|- ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) = ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) |
| 90 |
|
c0ex |
|- 0 e. _V |
| 91 |
|
ovex |
|- ( 1 / j ) e. _V |
| 92 |
90 91
|
ifex |
|- if ( j = 0 , 0 , ( 1 / j ) ) e. _V |
| 93 |
88 89 92
|
fvmpt |
|- ( j e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) = if ( j = 0 , 0 , ( 1 / j ) ) ) |
| 94 |
93
|
eqcomd |
|- ( j e. NN0 -> if ( j = 0 , 0 , ( 1 / j ) ) = ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) ) |
| 95 |
94
|
oveq1d |
|- ( j e. NN0 -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) = ( ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) x. ( x ^ j ) ) ) |
| 96 |
95
|
mpteq2ia |
|- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) = ( j e. NN0 |-> ( ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) x. ( x ^ j ) ) ) |
| 97 |
96
|
mpteq2i |
|- ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) = ( x e. CC |-> ( j e. NN0 |-> ( ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) x. ( x ^ j ) ) ) ) |
| 98 |
|
0cnd |
|- ( ( ( T. /\ m e. NN0 ) /\ m = 0 ) -> 0 e. CC ) |
| 99 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
| 100 |
99
|
adantl |
|- ( ( T. /\ m e. NN0 ) -> m e. CC ) |
| 101 |
|
neqne |
|- ( -. m = 0 -> m =/= 0 ) |
| 102 |
|
reccl |
|- ( ( m e. CC /\ m =/= 0 ) -> ( 1 / m ) e. CC ) |
| 103 |
100 101 102
|
syl2an |
|- ( ( ( T. /\ m e. NN0 ) /\ -. m = 0 ) -> ( 1 / m ) e. CC ) |
| 104 |
98 103
|
ifclda |
|- ( ( T. /\ m e. NN0 ) -> if ( m = 0 , 0 , ( 1 / m ) ) e. CC ) |
| 105 |
104
|
fmpttd |
|- ( T. -> ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) : NN0 --> CC ) |
| 106 |
|
recn |
|- ( r e. RR -> r e. CC ) |
| 107 |
|
oveq1 |
|- ( x = r -> ( x ^ j ) = ( r ^ j ) ) |
| 108 |
107
|
oveq2d |
|- ( x = r -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) = ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) |
| 109 |
108
|
mpteq2dv |
|- ( x = r -> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) |
| 110 |
|
eqid |
|- ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) = ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) |
| 111 |
|
nn0ex |
|- NN0 e. _V |
| 112 |
111
|
mptex |
|- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) e. _V |
| 113 |
109 110 112
|
fvmpt |
|- ( r e. CC -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) |
| 114 |
106 113
|
syl |
|- ( r e. RR -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) |
| 115 |
114
|
eqcomd |
|- ( r e. RR -> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) = ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) |
| 116 |
115
|
seqeq3d |
|- ( r e. RR -> seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) = seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) ) |
| 117 |
116
|
eleq1d |
|- ( r e. RR -> ( seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> <-> seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) e. dom ~~> ) ) |
| 118 |
117
|
rabbiia |
|- { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } = { r e. RR | seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) e. dom ~~> } |
| 119 |
118
|
supeq1i |
|- sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) = sup ( { r e. RR | seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) |
| 120 |
97 105 119
|
radcnvcl |
|- ( T. -> sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. ( 0 [,] +oo ) ) |
| 121 |
85 120
|
sselid |
|- ( T. -> sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 122 |
44 121
|
mp1i |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 123 |
|
1re |
|- 1 e. RR |
| 124 |
|
avglt1 |
|- ( ( ( abs ` y ) e. RR /\ 1 e. RR ) -> ( ( abs ` y ) < 1 <-> ( abs ` y ) < ( ( ( abs ` y ) + 1 ) / 2 ) ) ) |
| 125 |
54 123 124
|
sylancl |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( abs ` y ) < 1 <-> ( abs ` y ) < ( ( ( abs ` y ) + 1 ) / 2 ) ) ) |
| 126 |
64 125
|
mpbid |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) < ( ( ( abs ` y ) + 1 ) / 2 ) ) |
| 127 |
|
0red |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 e. RR ) |
| 128 |
127 54 83 79 126
|
lelttrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 < ( ( ( abs ` y ) + 1 ) / 2 ) ) |
| 129 |
127 83 128
|
ltled |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 <_ ( ( ( abs ` y ) + 1 ) / 2 ) ) |
| 130 |
83 129
|
absidd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( ( ( abs ` y ) + 1 ) / 2 ) ) = ( ( ( abs ` y ) + 1 ) / 2 ) ) |
| 131 |
44 105
|
mp1i |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) : NN0 --> CC ) |
| 132 |
83
|
recnd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) e. CC ) |
| 133 |
|
oveq1 |
|- ( x = ( ( ( abs ` y ) + 1 ) / 2 ) -> ( x ^ j ) = ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) |
| 134 |
133
|
oveq2d |
|- ( x = ( ( ( abs ` y ) + 1 ) / 2 ) -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) = ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) |
| 135 |
134
|
mpteq2dv |
|- ( x = ( ( ( abs ` y ) + 1 ) / 2 ) -> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) |
| 136 |
111
|
mptex |
|- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) e. _V |
| 137 |
135 110 136
|
fvmpt |
|- ( ( ( ( abs ` y ) + 1 ) / 2 ) e. CC -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` ( ( ( abs ` y ) + 1 ) / 2 ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) |
| 138 |
132 137
|
syl |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` ( ( ( abs ` y ) + 1 ) / 2 ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) |
| 139 |
138
|
seqeq3d |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` ( ( ( abs ` y ) + 1 ) / 2 ) ) ) = seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) ) |
| 140 |
|
avglt2 |
|- ( ( ( abs ` y ) e. RR /\ 1 e. RR ) -> ( ( abs ` y ) < 1 <-> ( ( ( abs ` y ) + 1 ) / 2 ) < 1 ) ) |
| 141 |
54 123 140
|
sylancl |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( abs ` y ) < 1 <-> ( ( ( abs ` y ) + 1 ) / 2 ) < 1 ) ) |
| 142 |
64 141
|
mpbid |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) < 1 ) |
| 143 |
130 142
|
eqbrtrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( ( ( abs ` y ) + 1 ) / 2 ) ) < 1 ) |
| 144 |
|
logtayllem |
|- ( ( ( ( ( abs ` y ) + 1 ) / 2 ) e. CC /\ ( abs ` ( ( ( abs ` y ) + 1 ) / 2 ) ) < 1 ) -> seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) e. dom ~~> ) |
| 145 |
132 143 144
|
syl2anc |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) e. dom ~~> ) |
| 146 |
139 145
|
eqeltrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` ( ( ( abs ` y ) + 1 ) / 2 ) ) ) e. dom ~~> ) |
| 147 |
97 131 119 132 146
|
radcnvle |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( ( ( abs ` y ) + 1 ) / 2 ) ) <_ sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) |
| 148 |
130 147
|
eqbrtrrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) <_ sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) |
| 149 |
80 84 122 126 148
|
xrltletrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) < sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) |
| 150 |
|
0re |
|- 0 e. RR |
| 151 |
|
elico2 |
|- ( ( 0 e. RR /\ sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR* ) -> ( ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) <-> ( ( abs ` y ) e. RR /\ 0 <_ ( abs ` y ) /\ ( abs ` y ) < sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 152 |
150 122 151
|
sylancr |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) <-> ( ( abs ` y ) e. RR /\ 0 <_ ( abs ` y ) /\ ( abs ` y ) < sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 153 |
54 79 149 152
|
mpbir3and |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |
| 154 |
|
absf |
|- abs : CC --> RR |
| 155 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
| 156 |
|
elpreima |
|- ( abs Fn CC -> ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) <-> ( y e. CC /\ ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) ) |
| 157 |
154 155 156
|
mp2b |
|- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) <-> ( y e. CC /\ ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 158 |
51 153 157
|
sylanbrc |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 159 |
|
cnvimass |
|- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) C_ dom abs |
| 160 |
154
|
fdmi |
|- dom abs = CC |
| 161 |
159 160
|
sseqtri |
|- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) C_ CC |
| 162 |
161
|
sseli |
|- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -> y e. CC ) |
| 163 |
|
oveq1 |
|- ( x = y -> ( x ^ j ) = ( y ^ j ) ) |
| 164 |
163
|
oveq2d |
|- ( x = y -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) = ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) |
| 165 |
164
|
mpteq2dv |
|- ( x = y -> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ) |
| 166 |
111
|
mptex |
|- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) e. _V |
| 167 |
165 110 166
|
fvmpt |
|- ( y e. CC -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ) |
| 168 |
167
|
adantr |
|- ( ( y e. CC /\ n e. NN0 ) -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ) |
| 169 |
168
|
fveq1d |
|- ( ( y e. CC /\ n e. NN0 ) -> ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) = ( ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ` n ) ) |
| 170 |
|
eqeq1 |
|- ( j = n -> ( j = 0 <-> n = 0 ) ) |
| 171 |
|
oveq2 |
|- ( j = n -> ( 1 / j ) = ( 1 / n ) ) |
| 172 |
170 171
|
ifbieq2d |
|- ( j = n -> if ( j = 0 , 0 , ( 1 / j ) ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 173 |
|
oveq2 |
|- ( j = n -> ( y ^ j ) = ( y ^ n ) ) |
| 174 |
172 173
|
oveq12d |
|- ( j = n -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
| 175 |
|
eqid |
|- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) |
| 176 |
|
ovex |
|- ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) e. _V |
| 177 |
174 175 176
|
fvmpt |
|- ( n e. NN0 -> ( ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
| 178 |
177
|
adantl |
|- ( ( y e. CC /\ n e. NN0 ) -> ( ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
| 179 |
169 178
|
eqtr2d |
|- ( ( y e. CC /\ n e. NN0 ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) ) |
| 180 |
179
|
sumeq2dv |
|- ( y e. CC -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ n e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) ) |
| 181 |
162 180
|
syl |
|- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ n e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) ) |
| 182 |
181
|
mpteq2ia |
|- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) = ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) ) |
| 183 |
|
eqid |
|- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) = ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |
| 184 |
|
eqid |
|- if ( sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` z ) + sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` z ) + 1 ) ) = if ( sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` z ) + sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` z ) + 1 ) ) |
| 185 |
97 182 105 119 183 184
|
psercn |
|- ( T. -> ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) e. ( ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -cn-> CC ) ) |
| 186 |
|
cncff |
|- ( ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) e. ( ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -cn-> CC ) -> ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) : ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) --> CC ) |
| 187 |
185 186
|
syl |
|- ( T. -> ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) : ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) --> CC ) |
| 188 |
187
|
fvmptelcdm |
|- ( ( T. /\ y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) e. CC ) |
| 189 |
158 188
|
sylan2 |
|- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) e. CC ) |
| 190 |
189
|
fmpttd |
|- ( T. -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) : ( 0 ( ball ` ( abs o. - ) ) 1 ) --> CC ) |
| 191 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 192 |
191
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
| 193 |
75
|
adantl |
|- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( log ` ( 1 - y ) ) e. CC ) |
| 194 |
|
ovexd |
|- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( ( 1 / ( 1 - y ) ) x. -u 1 ) e. _V ) |
| 195 |
29
|
cnmetdval |
|- ( ( 1 e. CC /\ ( 1 - y ) e. CC ) -> ( 1 ( abs o. - ) ( 1 - y ) ) = ( abs ` ( 1 - ( 1 - y ) ) ) ) |
| 196 |
48 53 195
|
sylancr |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 ( abs o. - ) ( 1 - y ) ) = ( abs ` ( 1 - ( 1 - y ) ) ) ) |
| 197 |
|
nncan |
|- ( ( 1 e. CC /\ y e. CC ) -> ( 1 - ( 1 - y ) ) = y ) |
| 198 |
48 51 197
|
sylancr |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 - ( 1 - y ) ) = y ) |
| 199 |
198
|
fveq2d |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( 1 - ( 1 - y ) ) ) = ( abs ` y ) ) |
| 200 |
196 199
|
eqtrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 ( abs o. - ) ( 1 - y ) ) = ( abs ` y ) ) |
| 201 |
200 64
|
eqbrtrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 ( abs o. - ) ( 1 - y ) ) < 1 ) |
| 202 |
|
elbl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( ( 1 - y ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 - y ) e. CC /\ ( 1 ( abs o. - ) ( 1 - y ) ) < 1 ) ) ) |
| 203 |
38 48 39 202
|
mp3an |
|- ( ( 1 - y ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 - y ) e. CC /\ ( 1 ( abs o. - ) ( 1 - y ) ) < 1 ) ) |
| 204 |
53 201 203
|
sylanbrc |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 - y ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 205 |
204
|
adantl |
|- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( 1 - y ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 206 |
|
neg1cn |
|- -u 1 e. CC |
| 207 |
206
|
a1i |
|- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> -u 1 e. CC ) |
| 208 |
|
eqid |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
| 209 |
208
|
dvlog2lem |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ ( -oo (,] 0 ) ) |
| 210 |
209
|
sseli |
|- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> x e. ( CC \ ( -oo (,] 0 ) ) ) |
| 211 |
210
|
eldifad |
|- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> x e. CC ) |
| 212 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
| 213 |
212
|
logdmn0 |
|- ( x e. ( CC \ ( -oo (,] 0 ) ) -> x =/= 0 ) |
| 214 |
210 213
|
syl |
|- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> x =/= 0 ) |
| 215 |
211 214
|
logcld |
|- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` x ) e. CC ) |
| 216 |
215
|
adantl |
|- ( ( T. /\ x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) -> ( log ` x ) e. CC ) |
| 217 |
|
ovexd |
|- ( ( T. /\ x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) -> ( 1 / x ) e. _V ) |
| 218 |
|
simpr |
|- ( ( T. /\ y e. CC ) -> y e. CC ) |
| 219 |
48 218 52
|
sylancr |
|- ( ( T. /\ y e. CC ) -> ( 1 - y ) e. CC ) |
| 220 |
206
|
a1i |
|- ( ( T. /\ y e. CC ) -> -u 1 e. CC ) |
| 221 |
|
1cnd |
|- ( ( T. /\ y e. CC ) -> 1 e. CC ) |
| 222 |
|
0cnd |
|- ( ( T. /\ y e. CC ) -> 0 e. CC ) |
| 223 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 224 |
192 223
|
dvmptc |
|- ( T. -> ( CC _D ( y e. CC |-> 1 ) ) = ( y e. CC |-> 0 ) ) |
| 225 |
192
|
dvmptid |
|- ( T. -> ( CC _D ( y e. CC |-> y ) ) = ( y e. CC |-> 1 ) ) |
| 226 |
192 221 222 224 218 221 225
|
dvmptsub |
|- ( T. -> ( CC _D ( y e. CC |-> ( 1 - y ) ) ) = ( y e. CC |-> ( 0 - 1 ) ) ) |
| 227 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 228 |
227
|
mpteq2i |
|- ( y e. CC |-> -u 1 ) = ( y e. CC |-> ( 0 - 1 ) ) |
| 229 |
226 228
|
eqtr4di |
|- ( T. -> ( CC _D ( y e. CC |-> ( 1 - y ) ) ) = ( y e. CC |-> -u 1 ) ) |
| 230 |
50
|
a1i |
|- ( T. -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
| 231 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 232 |
231
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 233 |
232
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 234 |
231
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 235 |
234
|
blopn |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) ) |
| 236 |
38 28 39 235
|
mp3an |
|- ( 0 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) |
| 237 |
236
|
a1i |
|- ( T. -> ( 0 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) ) |
| 238 |
192 219 220 229 230 233 231 237
|
dvmptres |
|- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 - y ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u 1 ) ) |
| 239 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
| 240 |
|
f1of |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
| 241 |
239 240
|
ax-mp |
|- log : ( CC \ { 0 } ) --> ran log |
| 242 |
212
|
logdmss |
|- ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) |
| 243 |
209 242
|
sstri |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) |
| 244 |
|
fssres |
|- ( ( log : ( CC \ { 0 } ) --> ran log /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) ) -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> ran log ) |
| 245 |
241 243 244
|
mp2an |
|- ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> ran log |
| 246 |
245
|
a1i |
|- ( T. -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> ran log ) |
| 247 |
246
|
feqmptd |
|- ( T. -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` x ) ) ) |
| 248 |
|
fvres |
|- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` x ) = ( log ` x ) ) |
| 249 |
248
|
mpteq2ia |
|- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` x ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` x ) ) |
| 250 |
247 249
|
eqtrdi |
|- ( T. -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` x ) ) ) |
| 251 |
250
|
oveq2d |
|- ( T. -> ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( CC _D ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` x ) ) ) ) |
| 252 |
208
|
dvlog2 |
|- ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / x ) ) |
| 253 |
251 252
|
eqtr3di |
|- ( T. -> ( CC _D ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` x ) ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / x ) ) ) |
| 254 |
|
fveq2 |
|- ( x = ( 1 - y ) -> ( log ` x ) = ( log ` ( 1 - y ) ) ) |
| 255 |
|
oveq2 |
|- ( x = ( 1 - y ) -> ( 1 / x ) = ( 1 / ( 1 - y ) ) ) |
| 256 |
192 192 205 207 216 217 238 253 254 255
|
dvmptco |
|- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` ( 1 - y ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( ( 1 / ( 1 - y ) ) x. -u 1 ) ) ) |
| 257 |
192 193 194 256
|
dvmptneg |
|- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( ( 1 / ( 1 - y ) ) x. -u 1 ) ) ) |
| 258 |
53 74
|
reccld |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 / ( 1 - y ) ) e. CC ) |
| 259 |
|
mulcom |
|- ( ( ( 1 / ( 1 - y ) ) e. CC /\ -u 1 e. CC ) -> ( ( 1 / ( 1 - y ) ) x. -u 1 ) = ( -u 1 x. ( 1 / ( 1 - y ) ) ) ) |
| 260 |
258 206 259
|
sylancl |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( 1 / ( 1 - y ) ) x. -u 1 ) = ( -u 1 x. ( 1 / ( 1 - y ) ) ) ) |
| 261 |
258
|
mulm1d |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( -u 1 x. ( 1 / ( 1 - y ) ) ) = -u ( 1 / ( 1 - y ) ) ) |
| 262 |
260 261
|
eqtrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( 1 / ( 1 - y ) ) x. -u 1 ) = -u ( 1 / ( 1 - y ) ) ) |
| 263 |
262
|
negeqd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u ( ( 1 / ( 1 - y ) ) x. -u 1 ) = -u -u ( 1 / ( 1 - y ) ) ) |
| 264 |
258
|
negnegd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u -u ( 1 / ( 1 - y ) ) = ( 1 / ( 1 - y ) ) ) |
| 265 |
263 264
|
eqtrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u ( ( 1 / ( 1 - y ) ) x. -u 1 ) = ( 1 / ( 1 - y ) ) ) |
| 266 |
265
|
mpteq2ia |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( ( 1 / ( 1 - y ) ) x. -u 1 ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) |
| 267 |
257 266
|
eqtrdi |
|- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) ) |
| 268 |
267
|
dmeqd |
|- ( T. -> dom ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = dom ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) ) |
| 269 |
|
dmmptg |
|- ( A. y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ( 1 / ( 1 - y ) ) e. _V -> dom ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) = ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 270 |
|
ovexd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 / ( 1 - y ) ) e. _V ) |
| 271 |
269 270
|
mprg |
|- dom ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) = ( 0 ( ball ` ( abs o. - ) ) 1 ) |
| 272 |
268 271
|
eqtrdi |
|- ( T. -> dom ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 273 |
|
sumex |
|- sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) e. _V |
| 274 |
273
|
a1i |
|- ( ( T. /\ y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) -> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) e. _V ) |
| 275 |
|
fveq2 |
|- ( n = k -> ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) = ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` k ) ) |
| 276 |
275
|
cbvsumv |
|- sum_ n e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) = sum_ k e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` k ) |
| 277 |
181 276
|
eqtrdi |
|- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ k e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` k ) ) |
| 278 |
277
|
mpteq2ia |
|- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) = ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ k e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` k ) ) |
| 279 |
|
eqid |
|- ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` z ) + if ( sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` z ) + sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` z ) + 1 ) ) ) / 2 ) ) = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` z ) + if ( sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` z ) + sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` z ) + 1 ) ) ) / 2 ) ) |
| 280 |
97 278 105 119 183 184 279
|
pserdv2 |
|- ( T. -> ( CC _D ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) = ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) ) |
| 281 |
158
|
ssriv |
|- ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |
| 282 |
281
|
a1i |
|- ( T. -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 283 |
192 188 274 280 282 233 231 237
|
dvmptres |
|- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) ) |
| 284 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 285 |
284
|
adantl |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> n e. NN0 ) |
| 286 |
|
eqeq1 |
|- ( m = n -> ( m = 0 <-> n = 0 ) ) |
| 287 |
|
oveq2 |
|- ( m = n -> ( 1 / m ) = ( 1 / n ) ) |
| 288 |
286 287
|
ifbieq2d |
|- ( m = n -> if ( m = 0 , 0 , ( 1 / m ) ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 289 |
|
ovex |
|- ( 1 / n ) e. _V |
| 290 |
90 289
|
ifex |
|- if ( n = 0 , 0 , ( 1 / n ) ) e. _V |
| 291 |
288 89 290
|
fvmpt |
|- ( n e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 292 |
285 291
|
syl |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 293 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
| 294 |
293
|
adantl |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> n =/= 0 ) |
| 295 |
294
|
neneqd |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> -. n = 0 ) |
| 296 |
295
|
iffalsed |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> if ( n = 0 , 0 , ( 1 / n ) ) = ( 1 / n ) ) |
| 297 |
292 296
|
eqtrd |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) = ( 1 / n ) ) |
| 298 |
297
|
oveq2d |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) = ( n x. ( 1 / n ) ) ) |
| 299 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 300 |
299
|
adantl |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> n e. CC ) |
| 301 |
300 294
|
recidd |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( n x. ( 1 / n ) ) = 1 ) |
| 302 |
298 301
|
eqtrd |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) = 1 ) |
| 303 |
302
|
oveq1d |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) = ( 1 x. ( y ^ ( n - 1 ) ) ) ) |
| 304 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
| 305 |
|
expcl |
|- ( ( y e. CC /\ ( n - 1 ) e. NN0 ) -> ( y ^ ( n - 1 ) ) e. CC ) |
| 306 |
51 304 305
|
syl2an |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( y ^ ( n - 1 ) ) e. CC ) |
| 307 |
306
|
mullidd |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( 1 x. ( y ^ ( n - 1 ) ) ) = ( y ^ ( n - 1 ) ) ) |
| 308 |
303 307
|
eqtrd |
|- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) = ( y ^ ( n - 1 ) ) ) |
| 309 |
308
|
sumeq2dv |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) = sum_ n e. NN ( y ^ ( n - 1 ) ) ) |
| 310 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 311 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 312 |
311
|
fveq2i |
|- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
| 313 |
310 312
|
eqtri |
|- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 314 |
|
oveq1 |
|- ( n = ( 1 + m ) -> ( n - 1 ) = ( ( 1 + m ) - 1 ) ) |
| 315 |
314
|
oveq2d |
|- ( n = ( 1 + m ) -> ( y ^ ( n - 1 ) ) = ( y ^ ( ( 1 + m ) - 1 ) ) ) |
| 316 |
|
1zzd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 1 e. ZZ ) |
| 317 |
|
0zd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 e. ZZ ) |
| 318 |
1 313 315 316 317 306
|
isumshft |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ n e. NN ( y ^ ( n - 1 ) ) = sum_ m e. NN0 ( y ^ ( ( 1 + m ) - 1 ) ) ) |
| 319 |
|
pncan2 |
|- ( ( 1 e. CC /\ m e. CC ) -> ( ( 1 + m ) - 1 ) = m ) |
| 320 |
48 99 319
|
sylancr |
|- ( m e. NN0 -> ( ( 1 + m ) - 1 ) = m ) |
| 321 |
320
|
oveq2d |
|- ( m e. NN0 -> ( y ^ ( ( 1 + m ) - 1 ) ) = ( y ^ m ) ) |
| 322 |
321
|
sumeq2i |
|- sum_ m e. NN0 ( y ^ ( ( 1 + m ) - 1 ) ) = sum_ m e. NN0 ( y ^ m ) |
| 323 |
318 322
|
eqtrdi |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ n e. NN ( y ^ ( n - 1 ) ) = sum_ m e. NN0 ( y ^ m ) ) |
| 324 |
|
geoisum |
|- ( ( y e. CC /\ ( abs ` y ) < 1 ) -> sum_ m e. NN0 ( y ^ m ) = ( 1 / ( 1 - y ) ) ) |
| 325 |
51 64 324
|
syl2anc |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ m e. NN0 ( y ^ m ) = ( 1 / ( 1 - y ) ) ) |
| 326 |
309 323 325
|
3eqtrd |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) = ( 1 / ( 1 - y ) ) ) |
| 327 |
326
|
mpteq2ia |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) |
| 328 |
283 327
|
eqtrdi |
|- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) ) |
| 329 |
267 328
|
eqtr4d |
|- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) ) |
| 330 |
|
1rp |
|- 1 e. RR+ |
| 331 |
|
blcntr |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR+ ) -> 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 332 |
38 28 330 331
|
mp3an |
|- 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |
| 333 |
332
|
a1i |
|- ( T. -> 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 334 |
|
oveq2 |
|- ( y = 0 -> ( 1 - y ) = ( 1 - 0 ) ) |
| 335 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 336 |
334 335
|
eqtrdi |
|- ( y = 0 -> ( 1 - y ) = 1 ) |
| 337 |
336
|
fveq2d |
|- ( y = 0 -> ( log ` ( 1 - y ) ) = ( log ` 1 ) ) |
| 338 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 339 |
337 338
|
eqtrdi |
|- ( y = 0 -> ( log ` ( 1 - y ) ) = 0 ) |
| 340 |
339
|
negeqd |
|- ( y = 0 -> -u ( log ` ( 1 - y ) ) = -u 0 ) |
| 341 |
|
neg0 |
|- -u 0 = 0 |
| 342 |
340 341
|
eqtrdi |
|- ( y = 0 -> -u ( log ` ( 1 - y ) ) = 0 ) |
| 343 |
|
eqid |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) |
| 344 |
342 343 90
|
fvmpt |
|- ( 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` 0 ) = 0 ) |
| 345 |
332 344
|
mp1i |
|- ( T. -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` 0 ) = 0 ) |
| 346 |
|
oveq1 |
|- ( 0 = if ( n = 0 , 0 , ( 1 / n ) ) -> ( 0 x. ( y ^ n ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
| 347 |
346
|
eqeq1d |
|- ( 0 = if ( n = 0 , 0 , ( 1 / n ) ) -> ( ( 0 x. ( y ^ n ) ) = 0 <-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = 0 ) ) |
| 348 |
|
oveq1 |
|- ( ( 1 / n ) = if ( n = 0 , 0 , ( 1 / n ) ) -> ( ( 1 / n ) x. ( y ^ n ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
| 349 |
348
|
eqeq1d |
|- ( ( 1 / n ) = if ( n = 0 , 0 , ( 1 / n ) ) -> ( ( ( 1 / n ) x. ( y ^ n ) ) = 0 <-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = 0 ) ) |
| 350 |
|
simpll |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> y = 0 ) |
| 351 |
350 28
|
eqeltrdi |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> y e. CC ) |
| 352 |
|
simplr |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> n e. NN0 ) |
| 353 |
351 352
|
expcld |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> ( y ^ n ) e. CC ) |
| 354 |
353
|
mul02d |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> ( 0 x. ( y ^ n ) ) = 0 ) |
| 355 |
|
simpll |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> y = 0 ) |
| 356 |
355
|
oveq1d |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( y ^ n ) = ( 0 ^ n ) ) |
| 357 |
|
simpr |
|- ( ( y = 0 /\ n e. NN0 ) -> n e. NN0 ) |
| 358 |
357 14
|
sylib |
|- ( ( y = 0 /\ n e. NN0 ) -> ( n e. NN \/ n = 0 ) ) |
| 359 |
358
|
ord |
|- ( ( y = 0 /\ n e. NN0 ) -> ( -. n e. NN -> n = 0 ) ) |
| 360 |
359
|
con1d |
|- ( ( y = 0 /\ n e. NN0 ) -> ( -. n = 0 -> n e. NN ) ) |
| 361 |
360
|
imp |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> n e. NN ) |
| 362 |
361
|
0expd |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( 0 ^ n ) = 0 ) |
| 363 |
356 362
|
eqtrd |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( y ^ n ) = 0 ) |
| 364 |
363
|
oveq2d |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( ( 1 / n ) x. ( y ^ n ) ) = ( ( 1 / n ) x. 0 ) ) |
| 365 |
361
|
nnrecred |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( 1 / n ) e. RR ) |
| 366 |
365
|
recnd |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( 1 / n ) e. CC ) |
| 367 |
366
|
mul01d |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( ( 1 / n ) x. 0 ) = 0 ) |
| 368 |
364 367
|
eqtrd |
|- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( ( 1 / n ) x. ( y ^ n ) ) = 0 ) |
| 369 |
347 349 354 368
|
ifbothda |
|- ( ( y = 0 /\ n e. NN0 ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = 0 ) |
| 370 |
369
|
sumeq2dv |
|- ( y = 0 -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ n e. NN0 0 ) |
| 371 |
1
|
eqimssi |
|- NN0 C_ ( ZZ>= ` 0 ) |
| 372 |
371
|
orci |
|- ( NN0 C_ ( ZZ>= ` 0 ) \/ NN0 e. Fin ) |
| 373 |
|
sumz |
|- ( ( NN0 C_ ( ZZ>= ` 0 ) \/ NN0 e. Fin ) -> sum_ n e. NN0 0 = 0 ) |
| 374 |
372 373
|
ax-mp |
|- sum_ n e. NN0 0 = 0 |
| 375 |
370 374
|
eqtrdi |
|- ( y = 0 -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = 0 ) |
| 376 |
|
eqid |
|- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
| 377 |
375 376 90
|
fvmpt |
|- ( 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` 0 ) = 0 ) |
| 378 |
332 377
|
mp1i |
|- ( T. -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` 0 ) = 0 ) |
| 379 |
345 378
|
eqtr4d |
|- ( T. -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` 0 ) = ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` 0 ) ) |
| 380 |
45 46 47 78 190 272 329 333 379
|
dv11cn |
|- ( T. -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) |
| 381 |
380
|
fveq1d |
|- ( T. -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` A ) = ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` A ) ) |
| 382 |
44 381
|
mp1i |
|- ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` A ) = ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` A ) ) |
| 383 |
|
oveq2 |
|- ( y = A -> ( 1 - y ) = ( 1 - A ) ) |
| 384 |
383
|
fveq2d |
|- ( y = A -> ( log ` ( 1 - y ) ) = ( log ` ( 1 - A ) ) ) |
| 385 |
384
|
negeqd |
|- ( y = A -> -u ( log ` ( 1 - y ) ) = -u ( log ` ( 1 - A ) ) ) |
| 386 |
|
negex |
|- -u ( log ` ( 1 - A ) ) e. _V |
| 387 |
385 343 386
|
fvmpt |
|- ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` A ) = -u ( log ` ( 1 - A ) ) ) |
| 388 |
|
oveq1 |
|- ( y = A -> ( y ^ n ) = ( A ^ n ) ) |
| 389 |
388
|
oveq2d |
|- ( y = A -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 390 |
389
|
sumeq2sdv |
|- ( y = A -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 391 |
|
sumex |
|- sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) e. _V |
| 392 |
390 376 391
|
fvmpt |
|- ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` A ) = sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 393 |
382 387 392
|
3eqtr3d |
|- ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u ( log ` ( 1 - A ) ) = sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 394 |
43 393
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> -u ( log ` ( 1 - A ) ) = sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 395 |
26 394
|
breqtrrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ~~> -u ( log ` ( 1 - A ) ) ) |
| 396 |
|
seqex |
|- seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) e. _V |
| 397 |
396
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) e. _V ) |
| 398 |
|
seqex |
|- seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) e. _V |
| 399 |
398
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) e. _V ) |
| 400 |
|
1zzd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. ZZ ) |
| 401 |
|
elnnuz |
|- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
| 402 |
|
fvres |
|- ( n e. ( ZZ>= ` 1 ) -> ( ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) ` n ) = ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ` n ) ) |
| 403 |
401 402
|
sylbi |
|- ( n e. NN -> ( ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) ` n ) = ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ` n ) ) |
| 404 |
403
|
eqcomd |
|- ( n e. NN -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ` n ) = ( ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) ` n ) ) |
| 405 |
|
addlid |
|- ( n e. CC -> ( 0 + n ) = n ) |
| 406 |
405
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. CC ) -> ( 0 + n ) = n ) |
| 407 |
|
0cnd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. CC ) |
| 408 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
| 409 |
408
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. ( ZZ>= ` 0 ) ) |
| 410 |
|
0cnd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) /\ k = 0 ) -> 0 e. CC ) |
| 411 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 412 |
411
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> k e. CC ) |
| 413 |
|
neqne |
|- ( -. k = 0 -> k =/= 0 ) |
| 414 |
|
reccl |
|- ( ( k e. CC /\ k =/= 0 ) -> ( 1 / k ) e. CC ) |
| 415 |
412 413 414
|
syl2an |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) /\ -. k = 0 ) -> ( 1 / k ) e. CC ) |
| 416 |
410 415
|
ifclda |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> if ( k = 0 , 0 , ( 1 / k ) ) e. CC ) |
| 417 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 418 |
417
|
adantlr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 419 |
416 418
|
mulcld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) e. CC ) |
| 420 |
419
|
fmpttd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) : NN0 --> CC ) |
| 421 |
|
1nn0 |
|- 1 e. NN0 |
| 422 |
|
ffvelcdm |
|- ( ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) : NN0 --> CC /\ 1 e. NN0 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 1 ) e. CC ) |
| 423 |
420 421 422
|
sylancl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 1 ) e. CC ) |
| 424 |
|
elfz1eq |
|- ( n e. ( 0 ... 0 ) -> n = 0 ) |
| 425 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 426 |
425
|
oveq2i |
|- ( 0 ... ( 1 - 1 ) ) = ( 0 ... 0 ) |
| 427 |
424 426
|
eleq2s |
|- ( n e. ( 0 ... ( 1 - 1 ) ) -> n = 0 ) |
| 428 |
427
|
fveq2d |
|- ( n e. ( 0 ... ( 1 - 1 ) ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 0 ) ) |
| 429 |
|
0nn0 |
|- 0 e. NN0 |
| 430 |
|
iftrue |
|- ( k = 0 -> if ( k = 0 , 0 , ( 1 / k ) ) = 0 ) |
| 431 |
|
oveq2 |
|- ( k = 0 -> ( A ^ k ) = ( A ^ 0 ) ) |
| 432 |
430 431
|
oveq12d |
|- ( k = 0 -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) = ( 0 x. ( A ^ 0 ) ) ) |
| 433 |
|
ovex |
|- ( 0 x. ( A ^ 0 ) ) e. _V |
| 434 |
432 8 433
|
fvmpt |
|- ( 0 e. NN0 -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 0 ) = ( 0 x. ( A ^ 0 ) ) ) |
| 435 |
429 434
|
ax-mp |
|- ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 0 ) = ( 0 x. ( A ^ 0 ) ) |
| 436 |
|
expcl |
|- ( ( A e. CC /\ 0 e. NN0 ) -> ( A ^ 0 ) e. CC ) |
| 437 |
27 429 436
|
sylancl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 0 ) e. CC ) |
| 438 |
437
|
mul02d |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 0 x. ( A ^ 0 ) ) = 0 ) |
| 439 |
435 438
|
eqtrid |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 0 ) = 0 ) |
| 440 |
428 439
|
sylan9eqr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. ( 0 ... ( 1 - 1 ) ) ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = 0 ) |
| 441 |
406 407 409 423 440
|
seqid |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) = seq 1 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ) |
| 442 |
293
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> n =/= 0 ) |
| 443 |
442
|
neneqd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> -. n = 0 ) |
| 444 |
443
|
iffalsed |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> if ( n = 0 , 0 , ( 1 / n ) ) = ( 1 / n ) ) |
| 445 |
444
|
oveq1d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) = ( ( 1 / n ) x. ( A ^ n ) ) ) |
| 446 |
284 23
|
sylan2 |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( A ^ n ) e. CC ) |
| 447 |
299
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> n e. CC ) |
| 448 |
446 447 442
|
divrec2d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( A ^ n ) / n ) = ( ( 1 / n ) x. ( A ^ n ) ) ) |
| 449 |
445 448
|
eqtr4d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) = ( ( A ^ n ) / n ) ) |
| 450 |
284 11
|
sylan2 |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 451 |
|
id |
|- ( k = n -> k = n ) |
| 452 |
6 451
|
oveq12d |
|- ( k = n -> ( ( A ^ k ) / k ) = ( ( A ^ n ) / n ) ) |
| 453 |
|
eqid |
|- ( k e. NN |-> ( ( A ^ k ) / k ) ) = ( k e. NN |-> ( ( A ^ k ) / k ) ) |
| 454 |
|
ovex |
|- ( ( A ^ n ) / n ) e. _V |
| 455 |
452 453 454
|
fvmpt |
|- ( n e. NN -> ( ( k e. NN |-> ( ( A ^ k ) / k ) ) ` n ) = ( ( A ^ n ) / n ) ) |
| 456 |
455
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( k e. NN |-> ( ( A ^ k ) / k ) ) ` n ) = ( ( A ^ n ) / n ) ) |
| 457 |
449 450 456
|
3eqtr4d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( ( k e. NN |-> ( ( A ^ k ) / k ) ) ` n ) ) |
| 458 |
401 457
|
sylan2br |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. ( ZZ>= ` 1 ) ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( ( k e. NN |-> ( ( A ^ k ) / k ) ) ` n ) ) |
| 459 |
400 458
|
seqfeq |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) = seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ) |
| 460 |
441 459
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) = seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ) |
| 461 |
460
|
fveq1d |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) ` n ) = ( seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ` n ) ) |
| 462 |
404 461
|
sylan9eqr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ` n ) = ( seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ` n ) ) |
| 463 |
310 397 399 400 462
|
climeq |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ~~> -u ( log ` ( 1 - A ) ) <-> seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ~~> -u ( log ` ( 1 - A ) ) ) ) |
| 464 |
395 463
|
mpbid |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ~~> -u ( log ` ( 1 - A ) ) ) |