| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pser.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 2 |
|
radcnv.a |
|- ( ph -> A : NN0 --> CC ) |
| 3 |
|
radcnv.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
| 4 |
|
ssrab2 |
|- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR |
| 5 |
|
ressxr |
|- RR C_ RR* |
| 6 |
4 5
|
sstri |
|- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* |
| 7 |
|
supxrcl |
|- ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* -> sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 8 |
6 7
|
mp1i |
|- ( ph -> sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 9 |
3 8
|
eqeltrid |
|- ( ph -> R e. RR* ) |
| 10 |
1 2
|
radcnv0 |
|- ( ph -> 0 e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 11 |
|
supxrub |
|- ( ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* /\ 0 e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) -> 0 <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 12 |
6 10 11
|
sylancr |
|- ( ph -> 0 <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 13 |
12 3
|
breqtrrdi |
|- ( ph -> 0 <_ R ) |
| 14 |
|
pnfge |
|- ( R e. RR* -> R <_ +oo ) |
| 15 |
9 14
|
syl |
|- ( ph -> R <_ +oo ) |
| 16 |
|
0xr |
|- 0 e. RR* |
| 17 |
|
pnfxr |
|- +oo e. RR* |
| 18 |
|
elicc1 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) |
| 19 |
16 17 18
|
mp2an |
|- ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) |
| 20 |
9 13 15 19
|
syl3anbrc |
|- ( ph -> R e. ( 0 [,] +oo ) ) |