| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pser.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 2 |
|
radcnv.a |
|- ( ph -> A : NN0 --> CC ) |
| 3 |
|
fveq2 |
|- ( r = 0 -> ( G ` r ) = ( G ` 0 ) ) |
| 4 |
3
|
seqeq3d |
|- ( r = 0 -> seq 0 ( + , ( G ` r ) ) = seq 0 ( + , ( G ` 0 ) ) ) |
| 5 |
4
|
eleq1d |
|- ( r = 0 -> ( seq 0 ( + , ( G ` r ) ) e. dom ~~> <-> seq 0 ( + , ( G ` 0 ) ) e. dom ~~> ) ) |
| 6 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 7 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 8 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 9 |
|
snfi |
|- { 0 } e. Fin |
| 10 |
9
|
a1i |
|- ( ph -> { 0 } e. Fin ) |
| 11 |
|
0nn0 |
|- 0 e. NN0 |
| 12 |
11
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 13 |
12
|
snssd |
|- ( ph -> { 0 } C_ NN0 ) |
| 14 |
|
ifid |
|- if ( k e. { 0 } , ( ( G ` 0 ) ` k ) , ( ( G ` 0 ) ` k ) ) = ( ( G ` 0 ) ` k ) |
| 15 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 16 |
1
|
pserval2 |
|- ( ( 0 e. CC /\ k e. NN0 ) -> ( ( G ` 0 ) ` k ) = ( ( A ` k ) x. ( 0 ^ k ) ) ) |
| 17 |
15 16
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( G ` 0 ) ` k ) = ( ( A ` k ) x. ( 0 ^ k ) ) ) |
| 18 |
17
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( ( G ` 0 ) ` k ) = ( ( A ` k ) x. ( 0 ^ k ) ) ) |
| 19 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 20 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
| 21 |
19 20
|
sylib |
|- ( ( ph /\ k e. NN0 ) -> ( k e. NN \/ k = 0 ) ) |
| 22 |
21
|
ord |
|- ( ( ph /\ k e. NN0 ) -> ( -. k e. NN -> k = 0 ) ) |
| 23 |
|
velsn |
|- ( k e. { 0 } <-> k = 0 ) |
| 24 |
22 23
|
imbitrrdi |
|- ( ( ph /\ k e. NN0 ) -> ( -. k e. NN -> k e. { 0 } ) ) |
| 25 |
24
|
con1d |
|- ( ( ph /\ k e. NN0 ) -> ( -. k e. { 0 } -> k e. NN ) ) |
| 26 |
25
|
imp |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> k e. NN ) |
| 27 |
26
|
0expd |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( 0 ^ k ) = 0 ) |
| 28 |
27
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` k ) x. 0 ) ) |
| 29 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 30 |
29
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( A ` k ) e. CC ) |
| 31 |
30
|
mul01d |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( ( A ` k ) x. 0 ) = 0 ) |
| 32 |
18 28 31
|
3eqtrd |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. { 0 } ) -> ( ( G ` 0 ) ` k ) = 0 ) |
| 33 |
32
|
ifeq2da |
|- ( ( ph /\ k e. NN0 ) -> if ( k e. { 0 } , ( ( G ` 0 ) ` k ) , ( ( G ` 0 ) ` k ) ) = if ( k e. { 0 } , ( ( G ` 0 ) ` k ) , 0 ) ) |
| 34 |
14 33
|
eqtr3id |
|- ( ( ph /\ k e. NN0 ) -> ( ( G ` 0 ) ` k ) = if ( k e. { 0 } , ( ( G ` 0 ) ` k ) , 0 ) ) |
| 35 |
13
|
sselda |
|- ( ( ph /\ k e. { 0 } ) -> k e. NN0 ) |
| 36 |
1 2 15
|
psergf |
|- ( ph -> ( G ` 0 ) : NN0 --> CC ) |
| 37 |
36
|
ffvelcdmda |
|- ( ( ph /\ k e. NN0 ) -> ( ( G ` 0 ) ` k ) e. CC ) |
| 38 |
35 37
|
syldan |
|- ( ( ph /\ k e. { 0 } ) -> ( ( G ` 0 ) ` k ) e. CC ) |
| 39 |
7 8 10 13 34 38
|
fsumcvg3 |
|- ( ph -> seq 0 ( + , ( G ` 0 ) ) e. dom ~~> ) |
| 40 |
5 6 39
|
elrabd |
|- ( ph -> 0 e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |