Metamath Proof Explorer


Theorem atansssdm

Description: The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses atansopn.d D=−∞0
atansopn.s S=y|1+y2D
Assertion atansssdm Sdomarctan

Proof

Step Hyp Ref Expression
1 atansopn.d D=−∞0
2 atansopn.s S=y|1+y2D
3 rabss y|1+y2Ddomarctany1+y2Dydomarctan
4 simpl y1+y2Dy
5 1 logdmn0 1+y2D1+y20
6 5 adantl y1+y2D1+y20
7 atandm4 ydomarctany1+y20
8 4 6 7 sylanbrc y1+y2Dydomarctan
9 8 ex y1+y2Dydomarctan
10 3 9 mprgbir y|1+y2Ddomarctan
11 2 10 eqsstri Sdomarctan