Metamath Proof Explorer


Theorem ressatans

Description: The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses atansopn.d D=−∞0
atansopn.s S=y|1+y2D
Assertion ressatans S

Proof

Step Hyp Ref Expression
1 atansopn.d D=−∞0
2 atansopn.s S=y|1+y2D
3 ax-resscn
4 1re 1
5 resqcl yy2
6 readdcl 1y21+y2
7 4 5 6 sylancr y1+y2
8 7 recnd y1+y2
9 4 a1i y1
10 0lt1 0<1
11 10 a1i y0<1
12 sqge0 y0y2
13 9 5 11 12 addgtge0d y0<1+y2
14 0re 0
15 ltnle 01+y20<1+y2¬1+y20
16 14 7 15 sylancr y0<1+y2¬1+y20
17 13 16 mpbid y¬1+y20
18 mnfxr −∞*
19 elioc2 −∞*01+y2−∞01+y2−∞<1+y21+y20
20 18 14 19 mp2an 1+y2−∞01+y2−∞<1+y21+y20
21 20 simp3bi 1+y2−∞01+y20
22 17 21 nsyl y¬1+y2−∞0
23 8 22 eldifd y1+y2−∞0
24 23 1 eleqtrrdi y1+y2D
25 24 rgen y1+y2D
26 ssrab y|1+y2Dy1+y2D
27 3 25 26 mpbir2an y|1+y2D
28 27 2 sseqtrri S